276 resultados para Tooth discoloration
Resumo:
Objective: To evaluate the influence of 810-nm-diode laser irradiation, applied before root canal filling, on apical sealing ability of three different resin-based sealers (AH Plus, EndoRez, and RealSeal). Background: Lasers have been widely used in endodontics. The dentin wall changes caused by laser irradiation could improve the sealing ability of endodontic cements. Methods: Sixty single-rooted human teeth were divided into six groups, according to the endodontic sealer used and previous 810-nm-diode laser irradiation. The protocol for laser irradiation was 2.5W in a continuous wave, in scanning mode, with four irradiations per tooth. After sample preparation, they were analyzed according to apical leakage with silver nitrate impregnation. Results: The RealSeal sealer achieved minimum leakage rates (1.24 mm), with significant differences at the 1% level (Tukey's test, p < 0.01) from AH Plus (1.84 mm) in nonirradiated groups. When the laser was used, there were also significant differences at the 5% level (p < 0.05) between irradiated groups (1.31 and 1.78 mm, respectively). Conclusion: The 810-nm-diode laser irradiation did not promote significant differences in apical leakage.
Resumo:
Objective: The aim of the present in vitro study was to evaluate, using two different methodologies, the effectiveness of pulsed Nd:YAG laser irradiation associated with topical acidulated phosphate fluoride (APF) for preventing enamel erosion and structure loss under regimes of erosion and abrasion or erosion only. Background Data: An increased incidence of noncarious lesions (erosion and abrasion) has been observed, consequently new preventative therapies have been proposed. Materials and Methods: Two different methodologies were performed. For the first, 100 bovine crowns were submitted to four different treatments (n = 25): no treatment (control), 4 min application of APF, Nd:YAG laser irradiation (1 W, 100 mJ, 10 Hz, 141.5 J/cm(2)), and Nd:YAG laser irradiation+4 min of APF. After the specimens were exposed to citric acid (2% w/v; 30 min), they were submitted to 5000 brushing cycles. Specimen mass was measured before and after the treatments. For the second methodology, 20 human crowns were embedded in acrylic resin and cut surfaces were exposed and polished. The specimens were divided into four groups (n = 10): no treatment (control), APF for 4 min, Nd:YAG laser irradiation (1 W, 100 mJ, 10 Hz, 125 J/cm(2)), and Nd:YAG laser irradiation+APF. The samples were then immersed in citric acid (2% w/v; 90 min). Vickers hardness was obtained before and after the treatments. Results: The Nd:YAG laser irradiation+APF (bovine and human enamel) was more effective and yielded statistically significant results for surface microhardness and enamel wear. Conclusion: Nd:YAG laser irradiation associated with APF reduced bovine enamel wear and human enamel softening when samples were submitted to a regime of erosion and abrasion or erosion only in vitro.
Resumo:
Objective: To verify the relationship between maxillary and mandibular effective lengths and dental crowding in patients with Class II malocclusions. Materials and Methods: The sample comprised 80 orthodontic patients with complete Class II malocclusions in the permanent dentition (47 male, 33 female) who were divided into two groups according to the amount of mandibular tooth-arch size discrepancy. The maxillary and mandibular effective lengths (Co-A and Co-Gn) and tooth-arch size discrepancies were measured on the initial cephalograms and dental casts, respectively. Intergroup comparisons of apical base lengths were performed with independent t-tests. Correlation between base length and dental crowding was examined by means of Pearson's correlation coefficient (P < .05). Results: Patients with Class II malocclusion and moderate to severe crowding had significantly smaller maxillary and mandibular effective lengths than subjects with the same malocclusion and slight mandibular crowding. A weak inverse correlation was also found between maxillary and mandibular effective lengths and the severity of dental crowding. Conclusion: Decreased maxillary and mandibular effective lengths constitute an important factor associated with dental crowding in patients with complete Class II malocclusion. (Angle Orthod. 2011;81:217-221.)
Resumo:
Objective: Previous investigations have demonstrated improved enamel demineralization resistance after laser irradiation. Due to the possibility of a synergistic effect between laser and fluoride, this study investigated the effect of fluoridated agents and Nd:YAG irradiation separately and in combination on enamel resistance to erosion. Methods: One hundred bovine enamel blocks were randomly divided into 10 groups: G1, untreated (control); G2, acidic phosphate fluoride (APF) (1.23% F) for 4 min; G3, fluoride varnish for 6 h (NaF, 2.26%); G4, 0.5 W Nd: YAG laser (250 mm pulse width, 10 Hz, 35 J/cm(2), with uniform velocity for 30 sec in each application); G5, 0.75 W Nd:YAG laser (52.5 J/cm(2)); G6, 1.0 W Nd:YAG laser (70 J/cm(2)); G7, APF + 0.75 W Nd:YAG laser; G8, 0.75 W Nd:YAG laser + APF; G9, fluoride varnish + 0.75 W Nd:YAG laser; and G10, 0.75 W Nd:YAG laser + fluoride varnish. During 10 d the erosive cycle was conducted by immersion of the blocks in Sprite light for 1 min, followed by immersion in artificial saliva for 59 min. This procedure was consecutively repeated four times per day. In each day, during the remaining 20 h, the blocks were maintained in artificial saliva. The wear was evaluated by profilometry (days 5 and 10). Data were tested by two-way ANOVA and Bonferroni's tests (p < 0.05). Results: The mean wear at days 5 and 10 was, respectively: G1, 1.83 and 2.67 mu m; G2, 1.04 and 2.60 mu m; G3, 1.03 and 2.48 mu m; G4, 1.13 and 2.47 mu m; G5, 1.07 and 2.44 mu m; G6, 1.0 and 2.35 mu m; G7, 0.75 and 2.27 mu m; G8, 0.80 and 2.12 mu m; G9, 0.76 and 2.47 mu m; and G10, 1.09 and 2.46 mu m. At day 5, all the experimental groups presented significant lesser wear when compared to control group. However, at 10 d, only G7 and G8 were still different from control. Conclusions: The association between APF application and laser irradiation seems to be an alternative preventive measure against dental erosion.
Resumo:
Objective: To evaluate the prevalence of dental anomalies in patients with agenesis of second premolars and compare the findings with the prevalence of these anomalies in the general population. Materials and Methods: A Brazilian sample of 203 patients aged 8 to 22 years was selected. All patients presented agenesis of at least one second premolar. Panoramic and periapical radiographs and dental casts were used to analyze the presence of other associated dental anomalies, including agenesis of other permanent teeth, ectopia of unerupted permanent teeth, infraocclusion of deciduous molars, microdontia of maxillary lateral incisors, and supernumerary teeth. The occurrence of these anomalies was compared with occurrence data previously reported for the general population. Statistical testing was performed using the chi-square test (P < .05) and the odds ratio. Results: The sample with agenesis of at least one second premolar presented a significantly increased prevalence rate of permanent tooth agenesis (21%), excluding third molars. Among the sample segment aged 14 years or greater (N = 77), occurrence of third-molar agenesis (48%) exceeded twice its normal frequency. Significant increases in occurrence of microdontia of maxillary lateral incisors (20.6%), infraocclusion of deciduous molars (24.6%), and distoangulation of mandibular second premolars (7.8%) were observed. Palatally displaced canine anomaly was also significantly elevated (8.1%). Conclusion: The results provide evidence that agenesis of other permanent teeth, microdontia, deciduous molar infraocclusion, and certain dental ectopias are the products of the same genetic mechanisms that cause second-premolar agenesis. (Angle Orthod. 2009;79:436-441.)
Resumo:
Objective: In this paper we evaluated the effect of two fluoridated agents and Nd:YAG irradiation separately and in combination on dentine resistance to erosion. Background Data: The morphological changes in dentin induced by laser treatment may reduce the progression of erosive lesions. Due to the possibility of a synergistic effect of laser with fluoride, this study was conducted. Materials and Methods: Eighty bovine dentine samples (4 x 4 mm) were randomly divided into eight groups, according to the following treatments: G1: untreated (control); G2: acidic phosphate fluoride gel (APF 1.23%) for 4 min; G3: fluoride varnish (NaF 2.26%) for 6 h; G4: 0.5 W Nd: YAG laser (250 mu sec pulse, 10 Hz, 35 J/cm(2), 30 sec); G5: 0.75 W Nd: YAG laser (52.5 J/cm(2)); G6: 1.0 W Nd: YAG laser (70 J/cm(2)); G7: APF + 0.75 W Nd: YAG laser; and G8: NaF + 0.75 W Nd: YAG laser. After the treatments, half of each dentine surface was protected with nail varnish. The samples were stored in artificial saliva (30 mL/sample) for 24 h and submitted to four erosive 1-min cycles. Between the erosive attacks, the blocks were maintained in artificial saliva for 59 min. The erosive wear was evaluated by profilometry. Results: The mean wear (+/- SD, mu m) was: G1: 1.20 +/- 0.20; G2: 0.47 +/- 0.06; G3: 0.81 +/- 0.11; G4: 1.47 +/- 0.32; G5: 1.52 +/- 0.24; G6: 1.49 +/- 0.30; G7: 0.49 +/- 0.11; and G8: 1.06 +/- 0.31 (Tukey's test, p < 0.05). Conclusions: Laser irradiation was not able to reduce dentine erosion. However, fluoride application was able to increase the dentine's resistance to erosion, and APF showed better results than fluoride varnish.
Three-dimensional finite element thermal analysis of dental tissues irradiated with Er,Cr:YSGG laser
Resumo:
In the present study, a finite element model of a half-sectioned molar tooth was developed in order to understand the thermal behavior of dental hard tissues (both enamel and dentin) under laser irradiation. The model was validated by comparing it with an in vitro experiment where a sound molar tooth was irradiated by an Er,Cr:YSGG pulsed laser. The numerical tooth model was conceived to simulate the in vitro experiment, reproducing the dimensions and physical conditions of the typical molar sound tooth, considering laser energy absorption and calculating the heat transfer through the dental tissues in three dimensions. The numerical assay considered the same three laser energy densities at the same wavelength (2.79 mu m) used in the experiment. A thermographic camera was used to perform the in vitro experiment, in which an Er, Cr: YSGG laser (2.79 mu m) was used to irradiate tooth samples and the infrared images obtained were stored and analyzed. The temperature increments in both the finite element model and the in vitro experiment were compared. The distribution of temperature inside the tooth versus time plotted for two critical points showed a relatively good agreement between the results of the experiment and model. The three dimensional model allows one to understand how the heat propagates through the dentin and enamel and to relate the amount of energy applied, width of the laser pulses, and temperature inside the tooth. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2953526]
Genetic Variation among Major Human Geographic Groups Supports a Peculiar Evolutionary Trend in PAX9
Resumo:
A total of 172 persons from nine South Amerindian, three African and one Eskimo populations were studied in relation to the Paired box gene 9 (PAX9) exon 3 (138 base pairs) as well as its 5' and 3' flanking intronic segments (232 bp and 220 bp, respectively) and integrated with the information available for the same genetic region from individuals of different geographical origins. Nine mutations were scored in exon 3 and six in its flanking regions; four of them are new South American tribe-specific singletons. Exon3 nucleotide diversity is several orders of magnitude higher than its intronic regions. Additionally, a set of variants in the PAX9 and 101 other genes related with dentition can define at least some dental morphological differences between Sub-Saharan Africans and non-Africans, probably associated with adaptations after the modern human exodus from Africa. Exon 3 of PAX9 could be a good molecular example of how evolvability works.
Resumo:
The unusual bivalve Guiratingia mendesi is redescribed from the original material. Detailed analysis of hinge and muscle scars allows more refined designation of its taxonomic position and affinities to other Permian bivalves from the Parana Basin. Guiratingia mendesi is characterized by very small, anteriorly expanded shells, with a great number of muscle striae within the area delimited by the pallial line. A flattened area is noted alongside the commissure of shell. The presence of a triangular blunt tooth in the right valve allows its designation to Megadesmidae. The absence of accessory muscle scars ""a"" and ""b"" and pedal elevator indicate that the genus belongs to the Plesiocyprinellinae, a group of bivalves considered endemic to the Passa Dois Group. Guiratingia mendesi is found, however, in limestones of the Palermo Formation (Middle Artinskian), nearly 100 in below the base of the Irati Formation (Late Artinskian). Until now, it was believed that within the Permian succession of Parana Basin, pre-Irati bivalves were all gondwanic or cosmopolitan. Guiratingia mendesi was an endemic, active burrower that resembles Runnegariella fragilis from the Permian Teresina Formation. This indicates that during Palermo times restricted paleogeographic conditions have existed within the huge Parana epeiric sea, favoring endemicity, probably in marine bayments close to its margins. The presence of an anteriorly expanded shell in G mendesi is a condition also seen in other Mesozoic and Cenozoic anomalodesmatans, demonstrating the recurrence of shell forms in distinct lineages of this interesting group of bivalves.
Resumo:
AISI D2 is the most commonly used cold-work tool steel of its grade. It offers high hardenability, low distortion after quenching, high resistance to softening and good wear resistance. The use of appropriate hard coatings on this steel can further improve its wear resistance. Boronizing is a surface treatment of Boron diffusion into the substrate. In this work boride layers were formed on AISI D2 steel using borax baths containing iron-titanium and aluminium, at 800 degrees C and 1000 degrees C during 4 h. The borided treated steel was characterized by optical microscopy, Vickers microhardness, X-ray diffraction (XRD) and glow discharge optical spectroscopy (GDOS) to verify the effect of the bath compositions and treatment temperatures in the layer formation. Depending on the bath composition, Fe(2)B or FeB was the predominant phase in the boride layers. The layers exhibited ""saw-tooth"" morphology at the substrate interface; layer thicknesses varied from 60 to 120 mu m, and hardness in the range of 1596-1744 HV were obtained. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Four different architectural acrylic paint formulations were tested by exposure to weathering for 7 years in the urban site of Sao Paulo and the coastal site of Ubatuba, South-East Brazil. Surface discolorations and detachment of coatings were assessed and the components of the biofilms were identified by standard microbiological methods. The painted surfaces of the mortar panels were much more discolored in Ubatuba, where major components of the biofilms were the cyanobacteria Gloeocapsa and Scytonema. In two of the four paint films, a pink coloration on the surface at this coastal site, caused mainly by red-pigmented Gloeocapsa, produced high discoloration ratings, but low degradation (as measured by detachment). Biofilms in Sao Paulo contained the same range of phototrophs, but in lesser quantity. However, fungal numbers, as determined by plating, were higher. Detachment ratings in this urban site were only slightly lower than in Ubatuba. The matt paint performed worst of the four, with silk and semi-gloss finishes giving lowest biodeterioration ratings. The matt elastomeric paint performed well at both sites, apart from becoming almost 100% covered by the pink biofilm in Ubatuba. Unpainted mortar panels became intensely discolored with a black biofilm, showing that all the paints had achieved one of their objectives, that of surface protection of the substrate. The value of PVC (pigment volume content) as an indicator of coatings biosusceptibility, is questioned. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: The presence of the periodontal ligament (PDL) makes it possible to absorb and distribute loads produced during masticatory function and other tooth contacts into the alveolar process via the alveolar bone proper. However, several factors affect the integrity of periodontal structures causing the destruction of the connective matrix and cells, the loss of fibrous attachment, and the resorption of alveolar bone. Methods: The purpose of this study was to evaluate the stress distribution by finite element analysis in a PDL in three-dimensional models of the upper central incisor under three different load conditions: 100 N occlusal loading at 45 degrees (model 1: masticatory load); 500 N at the incisal edge at 45 degrees (model 2: parafunctional habit); and 800 N at the buccal surface at 90 degrees (model 3: trauma case). The models were built from computed tomography scans. Results: The stress distribution was quite different among the models. The most significant values (harmful) of tensile and compressive stresses were observed in models 2 and 3, with similarly distinct patterns of stress distributions along the PDL. Tensile stresses were observed along the internal and external aspects of the PDL, mostly at the cervical and middle thirds. Conclusions: The stress generation in these models may affect the integrity of periodontal structures. A better understanding of the biomechanical behavior of the PDL under physiologic and traumatic loading conditions might enhance the understanding of the biologic reaction of the PDL in health and disease. J Periodontol 2009;80:1859-1867.
Resumo:
P>The aim of this comparative clinical study was to evaluate a novel bioactive glass-ceramic (Biosilicate (R) 1-20 mu m particles) to treat dentine hypersensitivity (DH). Volunteers (n = 120 patients/ 230 teeth) received the following treatments: G1-Sensodyne (R), G2-SensiKill (R), G3-Biosilicate (R) incorporated in a 1% water-free-gel and G4-Biosilicate (R) mixed with distilled water at 1:10 ratio. G1 and G3 were applied at home, daily for 30 days; G2 and G4 were applied once a week by a dentist (four applications). A visual analogue scale (VAS) was employed to evaluate pain for each quadrant in one sensitive tooth at baseline, weekly during treatment and during a 6-month follow-up period. Dentine hypersensitivity values (G1/n = 52), (G2/n = 62), (G3/n = 59) and (G4/n = 59) were analysed with Kruskal-Wallis/Dunn tests. All the products were efficient in reducing DH after 4 weeks. Among the four materials tested, G4 demonstrated the best clinical performance and provided the fastest treatment to reduce DH pain. Distilled water proved to be an adequate vehicle to disperse Biosilicate (R). Low DH scores were maintained during the 6-month follow-up period. The hypothesis that the novel bioactive glass-ceramic may be an efficient treatment for DH was confirmed.
Resumo:
In a previous study, we showed 4 times more lead in surface deciduous enamel (1.9-5.9 mu m) of a notoriously contaminated area (Bauru, Sao Paulo State, Brazil) in comparison to samples from a region with no lead contamination described (Ribeirao Preto, Sao Paulo State, Brazil). The samples from the more superficial enamel (1.9-3.18 mu m) showed higher amounts of lead and the highest variability, while in the subsurface enamel (3.18-5.9 mu m) a plateau in lead content was detected in children living in the contaminated environment (around 600 mu g/g). Here we expand our previous study, and use only samples obtained from subsurface enamel (Ribeirao Preto, n = 186; Bauru, n = 20). We tried to distinguish regions with more children with lead above the threshold of 600 mu g/g of lead in enamel. We tested whether differences in the percentage of children with ""high"" lead (>= 600 mu g/g) could be observed among the different Kindergartens studied in Ribeirao Preto. We also tested whether these results were different from the ones provided by conventional comparison of the data. Ribeirao Preto showed almost 4 times less lead than Bauru (p < 0.0001), and a statistically significant difference was found only in Ribeirao Preto between Kindergarten 2 and 5 (p<0.01). Twelve percent of the children from Ribeirao Preto had ""high"" lead, while 55% of the children from Bauru did so. However, when we looked at the percentages of children with ""high"" lead in each Kindergarten, and compared them, a whole new picture emerged, in which we could see children with ""high"" lead concentrated mainly in 3 Kindergartens from Ribeirao Preto, with Kindergarten 5 with 33% of the children with ""high"" lead, being statistically different from all Kindergartens, except 4 and 6. The threshold of 600 mu g/g of lead in subsurface enamel was tentatively settled here after the plateau seen in exposed children, and enabled us to identify locations with more children exposed to a higher amount of lead. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Degradation of Disperse Orange 1, Disperse Red 1 and Disperse Red 13 dyes has been performed using electrochemical oxidation on Pt electrode, chemical chlorination and photoelectrochemical oxidation on Ti/TiO(2) thin film electrodes in NaCl or Na(2)SO(4) medium. 100% discoloration was obtained for all tested methods after 1 h of treatment. Faster color removal was obtained by photoelectrocatalytic oxidation in 0.1 mol L(-1) NaCl pH 4.0 under UV light and an applied potential of +1.0V (vs SCE reference electrode), which indicates also values around 60% of TOC removal. The conventional chlorination method and electrochemical oxidation on Pt electrode resulted in negligible reduction of TOC removal. All dyes showed positive mutagenic activity in the Salmonella/microsome assay with the strain TA98 in the absence and presence of S9 (exogenous metabolic activation). Nevertheless, there is complete reduction of the mutagenic activity after 1 h of photoelectrocatalytic oxidation, suggesting that this process would be good option to remove disperse azo dyes from aqueous media. (C) 2008 Elsevier Ltd. All rights reserved.