218 resultados para Synthesis conditions
Resumo:
S2 cell populations (S2AcRVGP2K and S2MtRVGP-Hy) were selected after transfection of gene expression vectors carrying the cDNA encoding the rabies virus glycoprotein (RVGP) gene under the control of the constitutive (actin) or inductive (metallothionein) promoters. These cell populations were cultivated in a 1 L bioreactor mimicking a large scale bioprocess. Cell cultures were carried out at 90 rpm and monitored/controlled for temperature (28 degrees C) and dissolved oxygen (10 or 50% air saturation). Cell growth attained similar to 1.5-3 x 10(7) cells/mL after 3-4 clays of cultivation. The constitutive synthesis of RVGP in S2AcRVGP2K cells led to values of 0.76 mu g/10(7) cells at day 4 of culture. The RVGP synthesis in S2MtRVGP-Hy cell fraction increased upon CuSO(4) induction attaining specific productivities of 1.5-2 mu g/10(7) cells at clays 4-5. RVGP values in supernatant as a result of cell lysis were always very low (<0.2 mu g/mL) indicating good integrity of cells in culture. Overall the RVGP productivity was of 1.5-3 mg/L. Our data showed an important influence of dissolved oxygen on RVGP synthesis allowing a higher and sustained productivity by S2MtRVGP-Hy cells when cultivated with a DO of 10% air saturation. The RVGP productivity in bioreactors shown here mirrors those previously observed for T-flasks and shaker bottles and allow the preparation of the large RVGP quantities required for studies of structure and function. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The objective of this paper is to develop a mathematical model for the synthesis of anaerobic digester networks based on the optimization of a superstructure that relies on a non-linear programming formulation. The proposed model contains the kinetic and hydraulic equations developed by Pontes and Pinto [Chemical Engineering journal 122 (2006) 65-80] for two types of digesters, namely UASB (Upflow Anaerobic Sludge Blanket) and EGSB (Expanded Granular Sludge Bed) reactors. The objective function minimizes the overall sum of the reactor volumes. The optimization results show that a recycle stream is only effective in case of a reactor with short-circuit, such as the UASB reactor. Sensitivity analysis was performed in the one and two-digester network superstructures, for the following parameters: UASB reactor short-circuit fraction and the EGSB reactor maximum organic load, and the corresponding results vary considerably in terms of digester volumes. Scenarios for three and four-digester network superstructures were optimized and compared with the results from fewer digesters. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
There is an increasing need to treat effluents contaminated with phenol with advanced oxidation processes (AOPs) to minimize their impact on the environment as well as on bacteriological populations of other wastewater treatment systems. One of the most promising AOPs is the Fenton process that relies on the Fenton reaction. Nevertheless, there are no systematic studies on Fenton reactor networks. The objective of this paper is to develop a strategy for the optimal synthesis of Fenton reactor networks. The strategy is based on a superstructure optimization approach that is represented as a mixed integer non-linear programming (MINLP) model. Network superstructures with multiple Fenton reactors are optimized with the objective of minimizing the sum of capital, operation and depreciation costs of the effluent treatment system. The optimal solutions obtained provide the reactor volumes and network configuration, as well as the quantities of the reactants used in the Fenton process. Examples based on a case study show that multi-reactor networks yield decrease of up to 45% in overall costs for the treatment plant. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Resumo:
Since the recombinant thyroid-stimulating hormone (rhTSH) is secreted by stably transfected Chinese hamster ovary (CHO-hTSH) cells, a bioprocess consisting of immobilizing the cells on a substrate allowing their multiplication is very suitable for rhTSH recovering from supernatants at relative high degree of purity. In addition, such a system has also the advantage of easily allowing delicate manipulations of culture medium replacement. In the present study, we show the development of a laboratory scale bioprocess protocol of CHO-hTSH cell cultures on cytodex microcarriers (MCs) in a 1 L bioreactor, for the preparation of rhTSH batches in view of structure/function studies. CHO-hTSH cells were cultivated on a fetal bovine serum supplemented medium during cell growth phase. For rhTSH synthesis phase, 75% of supernatant was replaced by animal protein-free medium every 24 h. Cell cultures were monitored for agitation (rpm), temperature (A degrees C), dissolved oxygen (% DO), pH, cell concentration, MCs coverage, glucose consumption, lactate production, and rhTSH expression. The results indicate that the amount of MCs in the culture and the cell concentration at the beginning of rhTSH synthesis phase were crucial parameters for improving the final rhTSH production. By cultivating the CHO-hTSH cells with an initial cell seeding of four cells/MC on 4 g/L of MCs with a repeated fed batch mode of operation at 40 rpm, 37 A degrees C, 20% DO, and pH 7.2 and starting the rhTSH synthesis phase with 3 x 10(6) cells/mL, we were able to supply the cultures with enough glucose, to maintain low levels of lactate, and to provide high percent (similar to 80%) of fully covered MCs for a long period (5 days) and attain a high cell concentration (similar to 9 x 10(5) cells/mL). The novelty of the present study is represented by the establishment of cell culture conditions allowing us to produce similar to 1.6 mg/L of rhTSH in an already suitable degree of purity. Batches of produced rhTSH were purified and showed biological activity.
Resumo:
The production of red pigments and citrinin by Monascus purpureus CCT3802 was investigated in submerged batch cultures performed in two phases: in the first phase, cells were grown on glucose, at pH 4.5, 5.5 or 6.5; after glucose depletion, pH was adjusted, when necessary, to 4.5, 5.5, 6.5, 7.0, 8.0 or 8.5, for a production phase. The highest total red pigments absorbance of 11.3 U was 16 times greater than the lowest absorbance and was achieved with growth at pH 5.5, followed by production at pH 8.5, which causes an immediate reduction of the intra cellular red pigments from 75% to 17% of the total absorbance. The lowest citrinin concentration, 5.5 mg L-1, was verified in the same culture while the highest concentration, 55 mg L-1, was verified in cultures entirely carried out at pH 5.5. An alkaline medium, besides promoting intra cellular red pigments excretion, strongly represses citrinin synthesis.
Resumo:
We have synthesized phenylene-vinylene (PV) polymers containing segments with different conjugation lengths interspaced by random distributed aliphatic segments. Infrared (IR) and ultraviolet-visible (UV-vis) spectroscopies, hydrogen nuclear magnetic resonance ((1)H NMR) spectrometry and differential scanning calorimetry (DSC) were used to characterize the prepared copolymers` structures. Polymers molecular weights were determined by gel permeation chromatography (GPC). The effect of polymer structure and composition on emission properties was studied by fluorescence (PL) spectroscopy under different irradiation wavelength. The emission energy shift due to segments with longer conjugation lengths was minor owed to the low polymerization degree achieved.
Resumo:
We derive the Cramer-Rao Lower Bound (CRLB) for the estimation of initial conditions of noise-embedded orbits produced by general one-dimensional maps. We relate this bound`s asymptotic behavior to the attractor`s Lyapunov number and show numerical examples. These results pave the way for more suitable choices for the chaotic signal generator in some chaotic digital communication systems. (c) 2006 Published by Elsevier Ltd.
Resumo:
The aim of this study was to evaluate how the summer and winter conditions affect the photosynthesis and water relations of well-watered orange trees, considering the diurnal changes in leaf gas exchange, chlorophyll (Chl) fluorescence, and leaf water potential (I) of potted-plants growing in a subtropical climate. The diurnal pattern of photosynthesis in young citrus trees was not significantly affected by the environmental changes when compared the summer and winter seasons. However, citrus plants showed higher photosynthetic performance in summer, when plants fixed 2.9 times more CO(2) during the diurnal period than in the winter season. Curiously, the winter conditions were more favorable to photosynthesis of citrus plants, when considering the air temperature (< 29 A degrees C), leaf-to-air vapor pressure difference (< 2.4 kPa) and photon flux density (maximum values near light saturation) during the diurnal period. Therefore, low night temperature was the main environmental element changing the photosynthetic performance and water relations of well-watered plants during winter. Lower whole-plant hydraulic conductance, lower shoot hydration and lower stomatal conductance were noticed during winter when compared to the summer season. In winter, higher ratio between the apparent electron transport rate and leaf CO(2) assimilation was verified in afternoon, indicating reduction in electron use efficiency by photosynthesis. The high radiation loading in the summer season did not impair the citrus photochemistry, being photoprotective mechanisms active. Such mechanisms were related to increases in the heat dissipation of excessive light energy at the PSII level and to other metabolic processes consuming electrons, which impede the citrus photoinhibition under high light conditions.
Resumo:
(Morphological alterations in leave of micropropagated pineapple plants cv. IAC Gomo-de-mel acclimatizated in different conditions of luminosity). Microprapagated plants usually show difficulties to adapt to ex vitro conditions, and many times are submitted to the rustication process to aim the reduction of all the impacts resulting from the environmental changes. Once the leaf and its annexes are important indicators of adaptability strategies of the plants to adverse environmental conditions, the objective of this work was to compare the leaf anatomy of pineapple cv. IAC Gomo-de-mel in vitro cultivated plants with microplants acclimatized in different conditions of luminosity, under mesh, with 50% of shading and directly exposed to sunlight, to verify the needed of rustication process on this cultivar. Evaluations of the leaf epidermis using light and electronic scanning microscopy showed an increase on scale density in both leaves surfaces of the ex vitro microplants, mainly related to the ones directly exposed to sunlight. Subsequent observations showed an increase on cuticle thickness, on wavy contours of epidermal cells, and on the distribution and quantity of mesophyll fibers, evidencing the light conditions interference in morphological characteristics of these microplants. These alterations had not harmed microplant development, showing that are not need of rustication stages on the acclimatization process of this cultivar.
Resumo:
Plantation spacing selection has the primary objective of assigning each tree enough space for maximum growth and best quality to be attained with a minimum cost. From the harvest standpoint, an increase in stand density directly implies a decrease of individual tree volume, reducing also harvester productive capacity. The objective of this research is to assess the effects of several initial spacings and arrangements in eucalyptus plantations on production capacity, operational capacity and costs of forest harvester. Real operational data were collected from two eucalypt plantations at different initial spacing of 6.0, 7.5, 9.0, 12 and 18 m(2) per tree. Simulation data were obtained from a forest harvester simulator. Using spacing (E), mean tree volume (MV), diameter at breast height (DBH) and height (H) values, a stepwise regression test procedure was run, and correlations computed in order to measure their participation in operational capacity. Operational costs were computed with an accounting method proposed by FAO. Mean tree volume (MV) explained 88% of forest harvester operational capacity. Spacing (E) affected 8.5% of harvester operational capacity; wider spacings were related to higher individual tree volumes. Harvesting operation costs were lower in wider spaced treatments.
Resumo:
The evaluations of the effect of the climatic conditions and of the intensity of forest management in the trunk of the Gmelina arborea Linn. Roxb. trees are restricted to its physical-mechanical properties and use. The present work has as objective to study the radial variations of the wood anatomy of the gmelina trees sampled in plantations of 30 sites in Costa Rica, characterized by two climatic conditions (tropical dry and humid) and three intensities of forest management (intensive, moderate and without management). The results of the analyses demonstrated the existence of radial variation of the different anatomical parameters, except for the fiber lumen diameter and multiple vessels in the wood of the gmelina trees. For the wood anatomical elements, fibers (width, lumen diameter, and length), vessels (multiple vessels, diameter and frequency) and radial parenchyma (height) relationships were observed with the climate (tropical humid and dry). The radial variations of the wood anatomical elements were, also, influenced by the management regimes of the gmelina trees.
Resumo:
Time-domain reflectometry (TDR) is an important technique to obtain series of soil water content measurements in the field. Diode-segmented probes represent an improvement in TDR applicability, allowing measurements of the soil water content profile with a single probe. In this paper we explore an extensive soil water content dataset obtained by tensiometry and TDR from internal drainage experiments in two consecutive years in a tropical soil in Brazil. Comparisons between the variation patterns of the water content estimated by both methods exhibited evidences of deterioration of the TDR system during this two year period at field conditions. The results showed consistency in the variation pattern for the tensiometry data, whereas TDR estimates were inconsistent, with sensitivity decreasing over time. This suggests that difficulties may arise for the long-term use of this TDR system under tropical field conditions. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We used environmental accounting to evaluate high-intensity clonal eucalyptus production in Sao Paolo, Brazil, converting inputs (environmental, material, and labor) to emergy units so ecological efficiency could be compared on a common basis. Input data were compiled under three pH management scenarios (lime, ash, and sludge). The dominant emergy input is environmental work (transpired water, similar to 58% of total emergy), followed by diesel (similar to 15%); most purchased emergy is invested during harvest (41.8% of 7-year production totals). Where recycled materials are used for pH amendment (ash or sludge instead of lime), we observe marked improvements in ecological efficiency; lime (raw) yielded the highest unit emergy value (UEV = emergy per unit energy in the product = 9.6E + 03 sej J(-1)), whereas using sludge and ash (recycled) reduced the UEV to 8.9E + 03 and 8.8E + 03 sej J(-1), respectively. The emergy yield ratio was similarly affected, suggesting better ecological return on energy invested. Sensitivity of resource use to other operational modifications (e.g., decreased diesel, labor, or agrochemicals) was small (<3% change). Emergy synthesis permits comparison of sustainability among forest production systems globally. This eucalyptus scheme shows the highest ecological efficiency of analyzed pulp production operations (UEV range = 1.1 to 3.6E + 04 sej J(-1)) despite high operational intensity.
Resumo:
This study evaluates the impacts of Brazilian highway conditions on fuel consumption and, consequently, on carbon dioxide (COO emissions. For the purpose of this study, highway conditions refer to the level of highway maintenance: the incidence of large potholes, large surface cracks, uneven sections, and debris. Primary computer collected data related to the fuel consumption of three types of trucks were analyzed. The data were derived from 88 trips taken over six routes, each route representative of one of two highway conditions: better or worse. Study results are initially presented for each type of truck being monitored. The results are then aggregated to approximate the entire Brazilian highway network. In all cases, results confirmed environmental benefits resulting from travel over the better routes. There was found to be an increase in energy efficiency from traveling better roads, which resulted in lower fuel consumption and lower CO(2) emissions. Statistical analysis of the results suggests that, in general, fuel consumption data were significant at *P < 0.05, rejecting the null hypothesis that average fuel consumption from traveling the better routes is statistically equal to average fuel consumption from traveling the worse routes. Improved Brazilian road conditions would generate economic benefits, reduce dependency on and consumption of fossil fuels (due to the increase in energy efficiency), and reduce CO(2) emissions. These findings may have additional relevancy if Brazil needs to reduce carbon dioxide emissions to reach future Kyoto Protocol`s emissions targets, which should take effect in January 2013. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The ability of Phakopsora pachyrhizi to cause infection under conditions of discontinuous wetness was investigated. In in vitro experiments, droplets of a uredospore suspension were deposited onto the surface of polystyrene. After an initial wetting period of either 1, 2 or 4 h, the drops were dried for different time intervals and then the wetness was restored for 11, 10 or 8 h. Germination and appressorium formation were evaluated. In in vivo experiments, soybean plants were inoculated with a uredospore suspension. Leaf wetness was interrupted for 1, 3 or 6 h after initial wetting periods of 1, 2 or 4 h. Then, the wetting was re-established for 11, 10 or 8 h, respectively. Rust severity was evaluated 14 days after inoculation. The germination of the spores and the formation of the appressoria on the soybean leaves after different periods of wetness were also quantified in vivo by scanning electron microscopy. P. pachyrhizi showed a high infective capacity during short periods of time. An interruption of wetness after 1 h caused average reductions in germination from 56 to 75% and in appressorium formation from 84 to 96%. Rust severity was lower in all of the in vivo treatments with discontinuous wetness when compared to the control plants. Rust severity was zero when the interruption of wetness occurred 4 h after the initial wetting. Wetting interruptions after 1 and 2 h reduced the average rust severity by 83 and 77%, respectively. The germination of the uredospores on the soybean leaves occurred after 2 h of wetness, with a maximum germination appearing after 4 h of wetness. Wetness interruption affected mainly the spores that had initiated the germination.