269 resultados para Solid oral dosage forms, disintegration, hydrodynamic, biorelevance, tablets
Resumo:
Ni-doped SnO(2) nanoparticles, promising for gas-sensing applications, have been synthesized by a polymer precursor method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data analyses indicate the exclusive formation of nanosized particles with rutile-type phase (tetragonal SnO(2)) for Ni contents below 10 mol%. The mean crystallite size shows a progressive reduction with the Ni content. Room-temperature Raman spectra of Ni-doped SnO(2) nanoparticles show the presence of Raman active modes and modes activated by size effects. From the evolution of the A(1g) mode with the Ni content, a solubility limit at similar to 2 mol% was estimated. Below that content, Raman results are consistent with the occurrence of solid solution (ss) and surface segregation (seg.) of Ni ions. Above similar to 2 mol% Ni, the redshift of A(1g) mode suggests that the surface segregation of Ni ions takes place. Disorder-activated bands were determined and their integrated intensity evolution with the Ni content suggest that the solid-solution regime favors the increase of disorder; meanwhile, that disorder becomes weaker as the Ni content is increased. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The calcium carbonate industry generates solid waste products which, because of their high alkaline content (CaO, CaCO(3) and Ca (OH)(2)), have a substantial impact on the environment. The objectives of this study are to characterize and classify the solid waste products, which are generated during the hydration process of the calcium carbonate industry, according to ABNT`s NBR 10.000 series, and to determine the potential and efficiency of using these solid residues to correct soil acidity. Initially, the studied residue was submitted to gross mass, leaching, solubility, pH. X-ray Diffractometry, Inductive Coupled Plasma - Atomic Emission Spectrometry (ICP-AES), granularity and humidity analyses. The potential and efficiency of the residue for correcting soil acidity was determined by analysis of the quality attributes for soil correctives (PN, PRNT, Ca and Mg contents, granularity). Consequently, the results show that the studied residue may be used as a soil acidity corrective, considering that a typical corrective compound is recommended for each different type of soil. Additionally, the product must be further treated (dried and ground) to suit the specific requirements of the consumer market.
Resumo:
This work discusses a 4D lung reconstruction method from unsynchronized MR sequential images. The lung, differently from the heart, does not have its own muscles, turning impossible to see its real movements. The visualization of the lung in motion is an actual topic of research in medicine. CT (Computerized Tomography) can obtain spatio-temporal images of the heart by synchronizing with electrocardiographic waves. The FOV of the heart is small when compared to the lung`s FOV. The lung`s movement is not periodic and is susceptible to variations in the degree of respiration. Compared to CT, MR (Magnetic Resonance) imaging involves longer acquisition times and it is not possible to obtain instantaneous 3D images of the lung. For each slice, only one temporal sequence of 2D images can be obtained. However, methods using MR are preferable because they do not involve radiation. In this paper, based on unsynchronized MR images of the lung an animated B-Repsolid model of the lung is created. The 3D animation represents the lung`s motion associated to one selected sequence of MR images. The proposed method can be divided in two parts. First, the lung`s silhouettes moving in time are extracted by detecting the presence of a respiratory pattern on 2D spatio-temporal MR images. This approach enables us to determine the lung`s silhouette for every frame, even on frames with obscure edges. The sequence of extracted lung`s silhouettes are unsynchronized sagittal and coronal silhouettes. Using our algorithm it is possible to reconstruct a 3D lung starting from a silhouette of any type (coronal or sagittal) selected from any instant in time. A wire-frame model of the lung is created by composing coronal and sagittal planar silhouettes representing cross-sections. The silhouette composition is severely underconstrained. Many wire-frame models can be created from the observed sequences of silhouettes in time. Finally, a B-Rep solid model is created using a meshing algorithm. Using the B-Rep solid model the volume in time for the right and left lungs were calculated. It was possible to recognize several characteristics of the 3D real right and left lungs in the shaded model. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Our aim was to document the benefits of three dimensional finite element model generations from computed tomography data as well as the realistic creation of all oral structures in a patient. The stresses resulting from the applied load in our study did not exceed the structure limitations, suggesting a clinically acceptable physiological condition.
Resumo:
The controlled disposal of tannery sludge in agricultural soils is a viable alternative for recycling such waste; however, the impact of this practice on the arbuscular mycorrhizal fungi (AMF) communities is not well understood. We studied the effects of low-chromium tannery sludge amendment in soils on AMF spore density, species richness and diversity, and root colonization levels. Sludge was applied at four doses to an agricultural field in Rolandia, Parana state, Brazil. The sludge was left undisturbed on the soil surface and then the area was harrowed and planted with corn. The soil was sampled at four intervals and corn roots once within a year (2007/2008). AMF spore density was low (1 to 49 spores per 50 cm(3) of soil) and decreased as doses of tannery sludge increased. AMF root colonization was high (64%) and unaffected by tannery sludge. Eighteen AMF species belonging to six genera (Acaulospora, Glomus, Gigaspora, Scutellospora, Paraglomus, and Ambispora) were recorded. At the sludge doses of 9.0 and 22.6 Mg ha(-1), we observed a decrease in AMF species richness and diversity, and changes in their relative frequencies. Hierarchical grouping analysis showed that adding tannery waste to the soil altered AMF spore community in relation to the control, modifying the mycorrhizal status of soil and selectively favoring the sporulation of certain species.
Resumo:
Objective: We investigated the effect of supplementation with the dipeptide L-alanyl-L-glutamine (DIP) and a solution containing L-glutamine and L-alanine, both in the free form, on the plasma and tissue concentrations of glutamine, glutamate, and glutathione (GSH) in rats subjected to long-duration exercise. Methods: Rats were subjected to sessions of swim training. Twenty-one days before sacrifice, the animals were supplemented with DIP (1.5 g/kg, n = 6), a solution of free L-glutamine (1 g/kg) and free L-alanine (0.61 g/kg; GLN + ALA, n = 6), or water (CON, n = 6). Animals were sacrificed before (TR, n = 6) or after (LD, n = 6) long-duration exercise. Plasma concentrations of glutamine, glutamate, glucose, and ammonia and liver and muscle concentrations of glutamine, glutamate, and reduced and oxidized (GSSG) GSH were measured. Results: Higher concentrations of plasma glutamine were found in the DIP-TR and GLN + ALA-TR groups. The CON-LD group showed hyperammonemia, whereas the DIP-LD and GLN + ALA-LD groups exhibited lower concentrations of ammonia. Higher concentrations of glutamine, glutamate, and GSH/GSSG in the soleus muscle and GSH and GSH/GSSG in the liver were observed in the DIP-TR and GLN + ALA-TR groups. The DIP-LD and GLN + ALA-LD groups exhibited higher concentrations of GSH and GSH/GSSG in the soleus muscle and liver compared with the CON-LD group. Conclusion: Chronic oral administration of DIP and free GLN + ALA before long-duration exercise represents an effective source of glutamine and glutamate, which may increase muscle and liver stores of GSH and improve the redox state of the cell. (C) 2009 Published by Elsevier Inc.
Resumo:
The mechanism of uptake of anthocyanins (as well as the type) from food in the intestine is not clear. Anthocyanin-rich extract from wild mulberry, composed of cyanidin-3-glucoside (79%) and cyanidin-3-rutino side (cy-3-rut) (19%), was orally administered to Wistar rats, and their concentrations were determined in plasma, kidney, and the gastrointestinal (GI) tract. The 2 glycosylated forms showed maximum concentration at 15 minutes after oral administration, both in plasma and kidney. The cyanidin-3-glucoside and cy-3-rut were found in plasma as glucuronides, as sulfates of cyanidin, and as unchanged forms. The area under the curve of concentration vs time (AUC(0-8h)) was 2.76 +/- 0.88 mu g hour/mL and 9.74 +/- 0.75 mu g hour/g for plasma and kidney, respectively. In spite of the low absorption, the increase in plasma anthocyanin level resulted in a significant increase in antioxidant capacity (P < .05). In the GI tract (stomach and small and large intestines), cyanidin glycosides were found unchanged, but a low amount of the aglycone form was present. Anthocyanin glycosides were no longer detected in the GI tract after 8 hours of administration. In vitro fermentation showed that the 2 cyanidin glycosides were totally metabolized by the rat colonic microflora, explaining their disappearance. In addition, the 2 products of their degradation, cyanidin and protocatechuic acid, were not detected in plasma and probably do not influence plasma antioxidant capacity. As found by the everted sac model, anthocyanins were transported across the enterocyte by the sodium-dependent glucose transporter. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
A number of fatty acid ethyl esters (FAEEs) have recently been detected in meconium samples. Several of these FAEEs have been evaluated as possible biomarkers for in utero ethanol exposure. In the present study, a method was optimized and validated for the simultaneous determination of eight FAEEs (ethyl laurate, ethyl myristate, ethyl palmitate, ethyl palmitoleate, ethyl stearate, ethyl oleate, ethyl linoleate and ethyl arachidonate) in meconium samples. FAEEs were extracted by headspace solid-phase microextraction. Analyte detection and quantification were carried out using GC-MS operated in chemical ionization mode. The corresponding D5-ethyl esters were synthesized and used as internal standards. The LOQ and LOD for each analyte were <150 and <100 ng/g, respectively. The method showed good linearity (r(2)>0.98) in the concentration range studied (LOQ -2000 ng/g). The intra- and interday imprecision, given by the RSD of the method, was lower than 15% for all FAEEs studied. The validated method was applied to 63 authentic specimens. FAEEs could be detected in alcohol-exposed newborns ( >600 ng/g cumulative concentration). Interestingly, FAEEs could also be detected in some non-exposed newborns, although the concentrations were much lower than those measured in exposed cases.
Resumo:
Although the origin and functions of B-1 cells are controversial, they are considered as a cellular element of innate immunity due to their ability to produce natural autoantibodies of the IgM type. These antibodies are encoded by a relatively limited repertoire of V genes, and their resulting diversity is smaller than that produced by conventional B cells. B-1 cells constitute the larger fraction of B cells in the peritoneal cavity and migrate to non-specific inflammation sites. In addition, they contribute to the production of IgA antibodies in the intestinal lamina propria. It has been demonstrated that they participate in the induction and maintenance of peripheral tolerance. Herein, the participation of B-1 cells in inducing oral tolerance is evaluated. Unexpectedly, BALB/Xid mice, the animals deficient in B-1 cells, are not tolerized to OVA but instead are responsive to oral immunization. Conversely, BALB/c mice respond to oral tolerance to this antigen. We used these biological characteristics of these animals to investigate whether BA cells are involved in the induction of oral tolerance to OVA. Results show that B-1 cells from BALB/c mice, treated orally with OVA and adoptively transferred to BALB/Xid mice were able to suppress local hypersensitivity reaction and lymphoproliferative cellular response observed in BALB/.Xid mice. These data demonstrate that B-1 cells have regulatory properties and are involved in the induction of oral tolerance. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Dendritic cells (DCs) have been described as initiators and modulators of the immune response. Recently we have shown a predominant production of interleukin-10 cytokine, low levels of interferon-gamma and inefficient T cell proliferation in patients with severe forms of chromoblastomycosis. Chromoblastomycosis starts with subcutaneous inoculation of Fonsecaea pedrosoi into tissue where DCs are the first line of defence against this microorganism. In the present study, the interaction of F. pedrosoi and DCs obtained from patients with chromoblastomycosis was investigated. Our results showed that DCs from patients exhibited an increased expression of human leucocyte antigen D-related (HLA-DR) and co-stimulatory molecules. In the presence of conidia, the expression of HLA-DR and CD86 was up-regulated by DCs from patients and controls. Finally, we demonstrate the reversal of antigen-specific anergy and a T helper type 1 response mediated by DCs incubated with F. pedrosoi conidea.
Resumo:
Background: Tramadol is a well tolerated and effective analgesic used to treat moderate to severe pain. Several generic formulations of tramadol are available in Brazil; however, published information regarding their bioequivalence in the Brazilian population is not available. A study was designed for Brazilian regulatory authorities to allow marketing of a generic formulation. Objective: The purpose of this study was to compare the bioequivalence of 2 commercial tablet preparations containing tramadol 100 mg marketed for use in Brazil. Methods: A randomized, open-label, 2 x 2 crossover study was performed in healthy Brazilian volunteers under fasting conditions with a washout period of 12 days. Two tablet formulations of tramadol 100 mg (test and reference formulations) were administered as a single oral dose, and blood samples were collected over 24 hours. Tramadol plasma concentrations were quantified using a validated HPLC method. A plasma concentration time profile was generated for each volunteer and then mean values were determined, from which C(max), T(max), AUC(0-t), AUC(0-infinity), k(e), and t(1/2) were calculated using a noncompartmental model. Bioequivalence between the products was determined by calculating 90% CIs for the ratios of C(max), AUC(0-t), and AUC(0-infinity) values for the test and reference products using log-transformed data. Tolerability was assessed by monitoring vital signs (temperature, blood pressure, heart rate), laboratory tests (hematology, blood biochemistry, hepatic function, urinalysis), and interviews with the volunteers before medication administration and every 2 hours during the study. Results: Twenty-six healthy volunteers (13 men, 13 women) were enrolled in and completed the study. Mean (SD) age was 30 (6.8) years (range, 21-44 years), mean weight was 64 (8.3) kg (range, 53-79 kg), and mean height was 166 (6.4) cm (range, 155-178 cm). The 90% CIs for the ratios of C(max) (1.01-1.17), AUC(0-t) (1.00-1.13), and AUC(0-infinity) (1.00-1.14) values for the test and reference products fell within the interval of 0.80 to 1.25 proposed by most regulatory agencies, including the Brazilian regulatory body. No clinically important adverse effects were reported; only mild somnolence was reported by 4 volunteers and mild headaches by 5 volunteers, and there was no need to use medication to treat these symptoms. Conclusion: Pharmacokinetic analysis in these healthy Brazilian volunteers suggested that the test and reference formulations of tramadol 100-mg tablets met the regulatory requirements to assume bio-equivalence based on the Brazilian regulatory definition. (Clin Ther 2010;32:758-765) (C) 2010 Excerpta Medica Inc.
Resumo:
The purpose of this paper was to produce controlled-release matrices with 120 mg of propranolol hydrochloride (PHCl) employing hydroxypropyl methylcellulose (HPMC, Methocel (R) K100) as the gel forming barrier. Although this class of polymers has been commonly used for direct compression, with the intent of use reduced polymer concentrations to achieve controlled drug release, in this study tablets were produced by the wet granulation process. HPMC percentages ranged from 15-34 % and both soluble and non soluble diluents were tested in the 10 proposed tablet compositions. Dissolution testing of matrices was performed over a 12 h period in 1.2 pH medium (the first 2 h) and in pH 6.8 (10 h). Dissolution kinetic analysis was performed by applying Zero-order, First-order and Higuchi models with the aim of elucidating the drug release mechanism. All physical-chemical characteristics such as average weight, friability, hardness, diameter, height, and drug content were in accordance to the pharmacopeial specifications. Taking into account that PHCl is a very soluble drug, low concentrations (15 %) of HPMC were sufficient to reduce the drug release and to promote controlled release of PHCl, presenting good dissolution efficiencies, between 50 % and 63 %. The Higuchi model has presented the best fit to the 15 % HPMC formulations, indicating that the main release mechanism was diffusion. It could be concluded that the application of the wet granulation method reduced matrices erosion and promoted controlled release of the drug at low HPMC percentages.
Resumo:
The aim of this study was to develop and validate selective and sensitive methods for quantitative determination of an antibacterial agent, gemifloxacin, in tablets by high performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). The HPLC method was carried out on a LiChrospher (R) 100 RP-8e, 5 mu m (125 x 4 mm) column with a mobile phase composed of tetrahydrofuran-water (25:75, v/v) with 0.5 % of triethylamine and pH adjusted to 3.0 with orthophosphoric acid. The CZE method was performed using 50 mM sodium tetraborate buffer (pH 8.6). Samples were injected hydrodynamicaly (0.5 psi, 5 s) and the electrophoretic system was operated under normal polarity, at +20 kV and capillary temperature of 18 degrees C. A fused-silica capillary 40.2 cm (30 cm effective length) x 75 mu m i.d. was used. Both, HPLC and CZE could be interesting and efficient techniques to be applied for quality control in pharmaceutical industries.
Resumo:
The aim of the present study was to provide a numerical measure, through the process capability indexes (PCIs), C(p) and C(pk), on whether or not the manufacturing process can be considered capable of producing metamizol (500 mg) tablets. They were also used as statistical tool in order to prove the consistency of the tabletting process, making sure that the tablet weight and the content uniformity of metamizol are able to comply with the preset requirements. Besides that, the ANOVA, the t-test and the test for equal variances were applied to this study, allowing additional knowledge of the tabletting phase. Therefore, the proposed statistical approach intended to assure more safety, precision and accuracy on the process validation analysis.
Resumo:
New rapid first-derivative spectrophotometric (UVDS) and a stability-indicating high performance liquid chromatographic (HPLC) methods were developed, validated and successfully applied in the analysis of loratadine (LT) in tablets and syrups. In the UVDS method, 0.1 M HCl was used as solvent. The measurements were made at 312.4 nm in the first order derivative spectra. The HPLC method was carried out on a RP-18 column with a mobile phase composed of methanol-water-tetrahydrofuran (50:30:20, v/v/v). UV detection was made at 247 nm. For HPLC methods the total analysis time was <3min, adequate for routine quality control of tablets and syrups containing loratadine.