109 resultados para Rheological additives
Resumo:
The electrochemical methods cyclic and square-wave voltammetry were applied to develop an electroanalytical procedure for the determination of N-nitrosamines (N-nitrosopyrrolidine, N-nitrosopiperidine and N-nitrosodiethylamine) in aqueous solutions. Cyclic voltammetry was used to evaluate the electrochemical behaviors of N-nitrosamines on boron-doped diamond electrodes. It was observed an irreversible electrooxidation peak located in approximately 1.8 V (vs. Ag/AgCl) for both N-nitrosamines. The optimal electrochemical response was obtained using the following square-wave voltammetry parameters: f = 250 Hz, E(sw) = 50 mV and E(s) = 2 mV using a Britton-Robinson buffer solution as electrolyte (pH 2). The detection and quantification limits determined for total N-nitrosamines were 6.0 x 10(-8) and 2.0 x 10(-7) mol L(-1), respectively.
Resumo:
The present work aims at elucidating the technology applied in the fabrication of ceramic objects by the ancient ceramists that inhabited the western border of Pantanal, Mato-Grosso do Sul, with the help of a multidisciplinary approach making use of chemical and physical methods of analysis. The potshards under study show the presence of different types of additives, as determined by scanning electron microscopy (SEM) and time of flight secondary ion mass spectrometry (ToF-SIMS). The dispersion of the additives within the ceramic matrix was also addressed by SEM, which shed light on the mounting technique used by the potters to assemble the ceramic vessels. Moreover, the tensile strength conferred to the pottery by the use of a specific type of additive was evaluated by applying a mechanical test. These results were correlated with the firing temperature of the potshards, determined by means of electron paramagnetic resonance (EPR). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Cu(II) ions previously coordinated with typical electroplating organic additives were investigated as an alternative source of metal for plating bath. The coordination complexes were isolated from reaction between CuSO(4) and organic additives as ligands (oxalate ion, ethylenediamine or imidazole). Deposits over 1010 steel were successfully obtained from electroplated baths using the complexes without any addition of free additives, at pH = 4.5 (H(2)SO(4)/Na(2)SO(4)). These deposits showed better morphologies than deposits obtained from CuSO(4) solution either in the absence or presence of oxalate ion as additive (40 mmol L(-1)), at pH = 4.5 (H(2)SO(4)/Na(2)SO(4))It is suggestive that the starting metal plating coordinated with additives influences the electrode position processes, providing deposits with corrosion potentials shifted over + 200 mV in 0.5 mol L(-1) NaCl (1 mV s(-1)). The resistance against corrosion is sensitive to the type of additive-complex used as precursor. The complex with ethylenediamine presented the best deposit results with the lowest pitting potential (-0.27 V vs 3.0 mol L(-1) CE). It was concluded that the addition of free additives to the electrodeposition baths is not necessary when working with previously coordinated additives. Thus, the complexes generated in ex-situ are good alternatives as plating precursors for electrodeposition bath. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work investigates the solar heterogeneous photocatalytic degradation of three commercial acid dyes: Blue 9 (C.I. 42090), Red 51 (C.I. 45430), and Yellow 23 (C.I. 19140). TiO(2) P25 from Degussa was used as the photocatalyst. The dyes were completely degraded within 120 min of treatment in the following increasing order of removal rate: Blue 9 < Yellow 23 < Red 51. The photocatalytic color removal process was well described by a two-first-order in-series reaction, followed by another first-order reaction. Photolytic experiments showed that this process is quite inefficient and highly selective towards Red 51 only. The dyes` solution was completely decolorized and organic matter removals up to 99% were achieved with photocatalysis. The lack of selectivity and the possibility of using solar light to excite the photocatalyst are promising results regarding the feasibility of this technology.