827 resultados para Reed Elsevier Inc v Muchnick
Resumo:
Trypanosoma cruzi is the etiological agent of Chagas` disease, a pathogenesis that affects millions of people in Latin America. Here, we report the crystal structure of dihydroorotate dehydrogenase (DHODH) from T cruzi strain Y solved at 2.2 angstrom resolution. DHODH is a flavin mononucleotide containing enzyme, which catalyses the oxidation Of L-dihydroorotate to orotate, the fourth step and only redox reaction in the de novo biosynthesis of pyrimidine nucleotides. Genetic studies have shown that DHODH is essential for T cruzi survival, validating the idea that this enzyme can be considered an attractive target for the development of antichagasic drugs. In our work, a detailed analysis of T cruzi DHODH crystal structure has allowed us to suggest potential sites to be further exploited for the design of highly specific inhibitors through the technology of structure-based drug design. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 mu M) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca(2+) efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. All effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP(+) transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Nitric oxide (NO) plays an important role in the control of the vascular tone and the most often employed NO donors have limitations due to their harmful side-effects. In this context, new NO donors have been prepared, in order to minimize such undesirable effects. cis-[Ru(bpy)(2)(py)NO(2)](PF(6)) (RuBPY) is a new nitrite complex synthesized in our laboratory that releases NO in the presence of the vascular tissue only. In this work the vasorelaxation induced by this NO donor has been studied and compared to that obtained with the well known NO donor SNP. The relaxation induced by RuBPY is concentration-dependent in denuded rat aortas pre-contracted with phenylephrine (EC(50)). This new compound induced relaxation with efficacy similar to that of SNP, although its potency is lower. The time elapsed until maximum relaxation is achieved (E(max) = 240 s) is similar to measured for SNP (210 s). Vascular reactivity experiments demonstrated that aortic relaxation by RuBPY is inhibited by the soluble guanylyl-cyclase inhibitor 1H-[1,2,4] oxadiozolo[4,3-a]quinoxaline-1-one (ODQ 1 mu M). In a similar way, 1 mu M ODQ also reduces NO release from the complex as measured with DAF-2 DA by confocal microscopy. These findings suggest that this new complex RuBPY that has nitrite in its structure releases NO inside the vascular smooth muscle cell. This ruthenium complex releases significant amounts of NO only in the presence of the aortic tissue. Reduction of nitrite to NO is most probably dependent on the soluble guanylyl-cyclase enzyme, since NO release is inhibited by ODQ. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In the present study, an acidic PLA(2), designated BI-PLA(2), was isolated from Bothrops leucurus snake venom through two chromatographic steps: ion-exchange on CM-Sepharose and hydrophobic chromatography on Phenyl-Sepharose. Bl-PLA(2) was homogeneous on SDS-PAGE and when submitted to 2D electrophoresis the molecular mass was 15,000 Da and pl was 5.4. Its N-terminal sequence revealed a high homology with other Asp49 acidic PLA(2)s from snake venoms. Its specific activity was 159.9 U/mg and the indirect hemolytic activity was also higher than that of the crude venom. Bl-PLA(2) induced low myotoxic and edema activities as compared to those of the crude venom. Moreover, the enzyme was able to induce increments in IL-12p40, TNF-alpha, IL-1 beta and IL-6 levels and no variation of IL-8 and IL-10 in human PBMC stimulated in vitro, suggesting that Bl-PLA2 induces proinflammatory cytokine production by human mononuclear cells. Bothrops leucurus venom is still not extensively explored and knowledge of its components will contribute for a better understanding of its action mechanism. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Nitric oxide has been pointed out as the main agent involved in the vasodilatation, which is the major symptom of septic shock. However, there must be another mediator contributing to the circulatory failure observed in sepsis. This study aimed to investigate the endothelium-dependent relaxation induced by acetylcholine and the factors involved in this relaxation, using aortic rings isolated from rats submitted to cecal ligation and perforation (CLP), 2 h after induction of sepsis, which characterizes the hyperdynamic phase of sepsis. Under inhibition of constitutive NO-synthases (cNOS), the relaxation induced by acetylcholine was greater in the aortic rings of rats submitted to CLP compared with sham-operated rat aortic rings. The cyclooxygenase inhibitor indomethacin normalized this response, and the concentration of the stable metabolite of prostacyclin in the aorta of CLP rats increased in basal conditions and after stimulation with acetylcholine. Acetylcholine-induced NO production was lower in the endothelial cells from the aorta of CLP rats compared with sham rat aorta, but the protein expression of the cNOS was not altered. Moreover, iNOS protein expression could not be detected. Therefore, prostacyclin, and not only nitric oxide, is a mediator of the vasorelaxation induced by acetylcholine in aortas from rats submitted to CLP. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Aim: To investigate the mechanism through which the extracellular alkalinization promotes relaxation in rat thoracic aorta. Methods: The relaxation response to NaOH-induced extracellular alkalinization (7.4-8.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10(-6) M). The vascular reactivity experiments were performed in endothelium-intact and -denuded rings, in the presence or and absence of indomethacin (10(-5) M), NG-nitro-L-arginine methyl ester (L-NAME, 10(-4) M), N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide/HCl (W-7, 10(-7) M), 2,5-dimethylbenzimidazole (DMB, 2 x 10(-5) M) and methyl-B-cyclodextrin (10(-2) M). In addition, the effects of NaOH-induced extracellular alkalinization (pH 8.0 and 8.5) on the intracellular nitric oxide (NO) concentration was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5 mu M), in the presence and absence of DMB (2 x 10(-5) M). Results: The extracellular alkalinization failed to induce any change in vascular tone in aortic rings pre-contracted with KCl. In rings pre-contracted with Phe, the extracellular alkalinization caused relaxation in the endothelium-intact rings only, and this relaxation was maintained after cyclooxygenase inhibition; completely abolished by the inhibition of nitric oxide synthase (NOS), Ca(2+)/calmodulin and Na(+)/Ca(2+). exchanger (NCX), and partially blunted by the caveolae disassembly. Conclusions: These results suggest that, in rat thoracic aorta, that extracellular alkalinization with NaOH activates the NCX reverse mode of endothelial cells in rat thoracic aorta, thereby the intracellular Ca(2+) concentration and activating the Ca(2+)/calmodulin-dependent NOS. In turn, NO is released promoting relaxation. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The synthesis, structural aspects, pharmacological assays, and in vitro photoinduced cytotoxic properties of [Ru(NO)(ONO)(pc)] (pc = phthalocyanine) are described. Its biological effect on the B16F10 cell line was studied in the presence and absence of visible light irradiation. At comparable irradiation levels, [Ru(NO) (ONO)(pc)] was more effective than [Ru(pc)] at inhibiting cell growth, suggesting that occurrence of nitric oxide release following singlet oxygen production upon light irradiation may be an important mechanism by which the nitrosyl ruthenium complex exhibits enhanced biological activity in cells. Following visible light activation, the [Ru(NO)(ONO)(pc)] complex displayed increased potency in B16F10 cells upon modifications to the photoinduced dose; indeed, enhanced potency was detected when the nitrosyl ruthenium complex was encapsulated in a drug delivery system. The liposome containing the [Ru(NO)(ONO)(pc)] complex was over 25% more active than the corresponding ruthenium complex in phosphate buffer solution. The activity of the complex was directly proportional to the ruthenium amount present inside the cell, as determined by inductively coupled plasma mass spectroscopy. Flow cytometry analysis revealed that the photocytotoxic activity was mainly due to apoptosis. Furthermore, the vasorelaxation induced by [Ru(NO)(ONO)(pc)], proposed as NO carrier, was studied in rat isolated aorta. The observed vasodilation was concentration-dependent. Taken together, the present findings demonstrate that the [Ru(NO)(ONO)(pc)] complex induces vascular relaxation and could be a potent anti-tumor agent. Nitric oxide release following singlet oxygen production upon visible light irradiation on a nitrosyl ruthenium complex produces two radicals and may elicit phototoxic responses that may find useful applications in photodynamic therapy. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
Phenothiazines (PTZ) are drugs widely used in the treatment of schizophrenia. Trifluoperazine, a piperazinic PTZ derivative, has been described as inhibitor of the mitochondrial permeability transition (MPT). We reported previously the antioxidant activity of thioridazine at relatively low concentrations associated to the inhibition of the MPT (Brit. J. Pharmacol., 2002;136:136-142). In this study, it was investigated the induction of MPT by PTZ derivatives at concentrations higher than 10 mu M focusing on the molecular mechanism involved. PTZ promoted a dose-response mitochondrial swelling accompanied by mitochondrial transmembrane potential dissipation and calcium release, being thioridazine the most potent derivative. PTZ-induced MPT was partially inhibited by CsA or Mg(2+) and completely abolished by the abstraction of calcium. The oxidation of reduced thiol group of mitochondrial membrane proteins by PTZ was upstream the VIP opening and it was not sufficient to promote the opening of PTP that only occurred when calcium was present in the mitochondrial matrix. EPR experiments using DMPO as spin trapping excluded the participation of reactive oxygen species on the PTZ-induced MPT. Since 117 give rise to cation radicals chemically by the action of peroxidases and cyanide inhibited the PTZ-induced swelling, we propose that VIZ bury in the inner mitochondrial membrane and the chemically generated 117 cation radicals modify specific thiol groups that in the presence of Ca(2+) result in MPT associated to cytochrome c release. These findings contribute for the understanding of mechanisms of MET induction and may have implications for the cell death induced by PTZ. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A new nitrosyl ruthenium complex [Ru(NH center dot NHq)(terpy)NO](3+) nitric oxide donor was recently developed and due to its excellent vasodilator activity, it has been considered as a potential drug candidate. Drug metabolism is one of the main parameters that should be evaluated in the early drug development, so the biotransformation of this complex by rat hepatic microsomes was investigated. In order to perform the biotransformation study, a simple, sensitive and selective HPLC method was developed and carefully validated. The parameters evaluated in the validation procedure were: linearity, recovery, precision, accuracy, selectivity and stability. Except for the stability study, all the parameters evaluated presented values below the recommended by FDA guidelines. The stability study showed a time-dependent degradation profile. After method validation, the biotransformation study was accomplished and the kinetic parameters were determined. The biotransformation study obeyed the Michaelis-Menten kinetics. The V(max) and K(m) were, respectively, 0.1625 +/- 0.010 mu mol/mg protein/min and 79.97 +/- 11.52 mu M. These results indicate that the nitrosyl complex is metabolized by CYP450. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Mounting evidence indicates that structural and functional vascular changes associated with two-kidney, one-clip (2K-1C) hypertension result, at least in part, from altered activity of matrix metalloproteinases (MMPs). Because MMPs are upregulated by increased formation of reactive oxygen species (ROS), we hypothesized that antioxidant approaches could attenuate the increases in MMP-2 expression/activity and the vascular dysfunction and remodeling associated with 2K-1C hypertension. Sham-operated or 2K-1C hypertensive rats were treated with tempol 18 mg/kg/day or apocyanin 25 mg/kg/day (or vehicle). Systolic blood pressure was monitored weekly. After 8 weeks of treatment, aortic rings were isolated to assess endothelium-dependent and -independent relaxation. Quantitative morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin sections. Aortic and systemic ROS levels were measured using dihydroethidine and thiobarbituric acid-reactive substances, respectively. Aortic MMP-2 levels and activity were determined by gelatin and in situ zymography, fluorimetry, and immunohistochemistry. Tempol and apocyanin attenuated 2K-1C hypertension (181 +/- 20.8 and 192 +/- 17.6 mm Hg, respectively, versus 213 +/- 18 mm Hg in hypertensive controls; both p<0.05) and prevented the reduction in endothelium-dependent vasorelaxation found in 2K-1C rats. Tempol, but not apocyanin (p>0.05), prevented the vascular remodeling found in 2K-1C rats (all p<0.01). Tempol was more effective than apocyanin in attenuating hypertension-induced increases in oxidative stress (both p<0.05), MMP-2 levels, and MMP-2 activity in hypertensive rats (all p<0.05). Our results suggest that antioxidant approaches decrease MMP-2 upregulation and attenuate the vascular dysfunction and remodeling during 2K-1C hypertension. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We have described a new compound (trans-[RuCl([15]ane N(4))NO](2+)), which in vitro releases NO by the action of a reducing agent such as catecholamines. We investigated the effect of this NO donor in lowering the mean arterial pressure (MAP) in severe and moderate renal hypertensive 2K-1C rats. MAP was measured before and after intravenous in bolus injection of the compound in conscious 2K-1C and normotensive (2K) rats. In the hypertensive rats (basal 196.70 +/- 8.70 mmHg, n=5), the MAP was reduced in -34.25 +/- 13.50 mmHg(P < 0.05) 6 h after administration of 10 mmol/L/Kg of the compound in bolus. In normotensive rats the compound had no effect. We have also studied the effect of the injection of 0.1 mmol/L/Kg in normotensive (basal 118.20 +/- 11.25 mmHg, n = 4), moderate (basal 160.90 +/- 2.30 mmHg, n = 6), and severe hypertensive rats (basal 202.46 +/- 16.74 mmHg, n = 6). The compound at the dose of 0.1 mmol/L/Kg did not have effect (P> 0.05) on MAP of normotensive and moderate hypertensive rats. However, in the severe hypertensive rats (basal 202.46 +/- 16.70 mmHg, n = 6) there was a significant reduction on the MAP of -28.64 +/- 12.45 mmHg. The NO donor reduced the MAP of all hypertensive rats in the dose of 10 mmol/L/Kg and in the severe hypertensive rats at the dose of 0.1 mmol/L/Kg. The compound was not cytotoxic to the rat aortic vascular smooth muscle cells in the concentration of 0.1 mmol/LKg that produced the maximum relaxation. (C) 2008 Elsevier Inc. All rights reserved.
Fluorescent indication that nitric oxide formation in NTS neurons is modulated by glutamate and GABA
Resumo:
Nitric oxide (NO) in NTS plays an important role in regulating autonomic function to the cardiovascular system. Using the fluorescent dye DAF-2 DA, we evaluated the NO concentration in NTS. Brainstem slices of rats were loaded with DAF-2 DA, washed, fixed in paraformaldehyde and examined under fluorescent light. In different experimental groups, NTS slices were pre-incubated with 1 mM L-NAME (a non-selective NOS inhibitor), 1 MM D-NAME (an inactive enantiomere of L-NAME), 1 mM kynurenic acid (a nonselective ionotropic receptors antagonist) or 20 mu M bicuculline (a selective GABA(A) receptors antagonist) before and during DAF-2 DA loading. Images were acquired using a confocal microscope and the intensity of fluorescence was quantified in three antero-posterior NTS regions. In addition, slices previously loaded with DAF-2 DA were incubated with NeuN or GFAP antibody. A semi-quantitative analysis of the fluorescence intensity showed that the basal NO concentration was similar in all antero-posterior aspects of the NTS (rostral intermediate, 15.5 +/- 0.8 AU: caudal intermediate, 13.2 +/- 1.4 AU; caudal commissural, 13.8 +/- 1.4 AU, n = 10). In addition, the inhibition of NOS and the antagonism of glutamatergic receptors decreased the NO fluorescence in the NTS. On the other hand, D-NAME did not affect the NO fluorescence and the antagonism of GABAA receptors increased the NO fluorescence in the NTS. It is important to note that the fluorescence for NO was detected mainly in neurons. These data show that the fluorescence observed after NTS loading with DAF-2 DA is a result of NO present in the NTS and support the concept that NTS neurons have basal NO production which is modulated by L-glutamate and GABA. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The perivascular nerve network expresses a Ca(2+) receptor that is activated by high extracellular Ca(2+) concentrations and causes vasorelaxation in resistance arteries. We have verified the influence of perivascular nerve fibers on the Ca(2+)-induced relaxation in aortic rings. To test our hypothesis, either pre-contracted aortas isolated from rats after sensory denervation with capsaicin or aortic rings acutely denervated with phenol were stimulated to relax with increasing extracellular Ca(2+) concentration. We also studied the role of the endothelium on the Ca(2+)-induced relaxation, and we verified the participation of endothelial/nonendothelial nitric oxide and cyclooxygenise-arachidonic acid metabolites. Additionally, the role of the sarcoplasmic reticulum, K(+) channels and L-type Ca(2+) channels on the Ca(2+)-induced relaxation were evaluated. We have observed that the Ca(2+)-induced relaxation is completely nerve independent, and it is potentiated by endothelial nitric oxide (NO). In endothelium-denuded aortic rings, indomethacin and AH6809 (PGF(2 alpha) receptor antagonist) enhance the relaxing response to Ca(2+). This relaxation is inhibited by thapsigargin and verapamil, while was not altered by tetraethylammonium. In conclusion, we have shown that perivascular nervous fibers do not participate in the Ca(2+)-induced relaxation, which is potentiated by endothelial NO. In endothelium-denuded preparations, indomethacin and AH6809 enhance the relaxation induced by Ca(2+). The relaxing response to Call was impaired by verapamil and thapsigargin, revealing the importance of L-type Ca(2+) channels and sarcoplasmic reticulum in this response. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The ruthenium nitrosyl complex trans-[Ru(NO)(NH(3))(4)(py)](PF(6))(3) (pyNO), a nitric oxide (NO) donor, was studied in regard to the release of NO and its impact both on isolated mitochondria and HepG2 cells. In isolated mitochondria, NO release from pyNO was concomitant with NAD(P)H oxidation and, in the 25-100 mu M range, it resulted in dissipation of mitochondrial membrane potential, inhibition of state 3 respiration, ATP depletion and reactive oxygen species (ROS) generation. In the presence of Ca(2+), mitochondrial permeability transition (MPT), an unspecific membrane permeabilization involved in cell necrosis and some types of apoptosis, was elicited. As demonstrated by externalization of phosphatidylserine and activation of caspase-9 and caspase-3, pyNO (50-100 mu M) induced HepG2 cell death, mainly by apoptosis. The combined action of the NO itself, the peroxynitrite yielded by NO in the presence of reactive oxygen species (ROS) and the oxidative stress generated by the NAD(P)H oxidation is proposed to be involved in cell death by pyNO, both via respiratory chain inhibition and ROS levels increase, or even via MPT, if Ca(2+) is present. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The purified beta-glucosidase of Aureobasidium pullulans ER-16 is one of more thermostable enzyme reported to date. Considering the unfeasibility of using purified enzyme for industrial application, it was interesting to analyze this property for the crude enzyme. Thermophilic fungus Thermoascus aurantiacus CBMAI-756 and mesophilic A. pullulans ER-16 were cultivated in different hemicellulosic materials on solid-state cultivation for beta-glucosidase production. Wheat bran was most appropriate for beta-glucosidase production by both microorganisms. T. aurantiacus exhibited maximum enzyme production (7.0 U/ml or 70 U/g) at 48-72 h and A. pullulans a maximum (1.3 U/ml or 13 U/g) at 120 h. Maximum activities were at 75 degrees C with optimum pH at 4.5 and 4.0, for T aurantiacus and A. pullulans, respectively. A. pullulans`s beta-glucosidase was more pH stable (4.5-10.0 against 4.5-8.0) and more thermostable (90% after 1 h at 75 degrees C against 85% after 1 h at 70 degrees C) than the enzyme from the thermophilic T. aurantiacus. The t((1/2)) at 80 degrees C were 50 and 12.5 min for A. pullulans and T. aurantiascus, respectively. These data confirm the high thermostability of crude beta-glucosidase from A. pullulans. Both beta-glucosidases were strongly inhibited by glucose, but ethanol significantly increased the activity of the enzyme from T. aurantiacus. (C) 2008 Elsevier Inc. All rights reserved.