110 resultados para QCD deconfinement phase transition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization of laser glasses in the system (B(2)O(3))(0.6){(Al(2)O(3))(0.4-y)(Y(2)O(3))(y)} (0.1 <= y <= 0.25) doped with different levels of ytterbium oxide has been investigated by X-ray powder diffraction, differential thermal analysis, and various solid-state NMR techniques. The homogeneous glasses undergo major phase segregation processes resulting in crystalline YBO(3), crystalline YAI(3)(BO(3))(4), and residual glassy B(2)O(3) as the major products. This process can be analyzed in a quantitative fashion by solid-state (11)B, (27)Al, and (89)Y NMR spectroscopies as well as (11)B{(27)Al} rotational echo double resonance (REDOR) experiments. The Yb dopants end up in both of the crystalline components, producing increased line widths of the corresponding (11)B, (27)Al, and (89)Y NMR resonances that depend linearly on the Yb/Y substitution ratio. A preliminary analysis of the composition dependence suggests that the Yb(3+) dopant is not perfectly equipartitioned between both crystalline phases, suggesting a moderate preference of Yb to substitute in the crystalline YBO(3) component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A very unusual triple structural transition pattern below room temperature was observed for the antifilarial drug diethylcarbamazine citrate. Besides the first thermal, crystallographic, and vibrational investigations of this first-line drug used in clinical treatment for lymphatic filariasis, a noteworthy behavior with three structural transformations as a function of temperature was demonstrated by differential scanning calorimetry, Raman spectroscopy, and single-crystal X-ray diffractometry. Our X-ray data on single crystals allow for a complete featuring and understanding of all transitions, since the four structures associated with the three solid-solid phase transformations were accurately determined. Two of three structural transitions show an order-disorder mechanism and temperature hysteresis with exothermic peaks at 224 K (T(1)`) and 213 K (T(2)`) upon cooling and endothermic ones at 248 K (T(1)) and 226 K (T(2)) upon heating. The other transition occurs at 108 K (T(3)) and it is temperature-rate sensitive. Molecular displacements onto the (010) plane and conformational changes of the diethylcarbamazine backbone as a consequence of the C-H center dot center dot center dot N hydrogen bonding formation/cleavage between drug molecules explain the mechanism of the transitions at T(1)`/T(2). However, such changes are observed only on alternate columns of the drug intercalated by citrate chains, which leads to a doubling of the lattice period along the a axis of the 235 K structure with respect to the 150 and 293 K structures. At T(2)`/T(1), these structural alterations occur in all columns of the drug. At T(3), there is a rotation on the axis of the N-C bond between the carbamoyl moiety and an ethyl group of one crystallographically independent diethylcarbamazine molecule besides molecular shifts and other conformational alterations. The impact of this study is based on the fascinating finding in which the versatile capability of structural adaptation dependent on the thermal history was observed for a relatively simple organic salt, diethylcarbamazine citrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solvatochromic shift of the lowest singlet it pi -> pi* electronic transition in the all-trans, cis-13, cis-11, cis-9, and cis-7 retinal isomers were computed under the influence of water, methanol, and benzene solvents. Excitation energies were calculated in gas phase and in solution. The calculations in solution were performed considering the sequential Monte Carlo (MC) /Quantum Mechanical approach. The MC simulations were performed considering the full retinal isomer molecules and 900 water molecules, 900 methanol, or 400 benzene ones. The OPLS/AA parametrization was chosen for retinal, methanol, and benzene molecules and the SPC model was used for water one. From the MC calculations 100 independent configurations were selected, with 100 solvent molecules in thermodynamical equilibrium at T = 298.15 K. Average point-charges were obtained from those independent configurations for water, methanol, and benzene solvent. TDDFT and CASSCF//CASPT2 methodologies were used to compute the vertical excitation energy of the retinal isomers in different environment. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2076-2087, 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cooks kinetic method has been very convenient to correlate the relative dissociation rates obtained by collision-induced fragmentation experiments with the energies of two related bonds in molecules and complexes in the gas phase. Reliable bond energy data are, however, not always available, particularly for polynuclear transition-metal complexes, such as the triruthenium acetate clusters of the general formula [Ru(3) (mu(3)-O)(mu-CH(3)COO)(6)(py)(2)(L)](+), where L = ring substituted N-heterocyclic ligands. Accordingly, their gas-phase collision-induced tandem mass spectrometry (CID MS/MS) dissociation patterns have been analyzed pursuing a relationship with the more easily accessible redox potentials (E(1/2)) and Lever`s E(L) parameters. In fact, excellent linear correlations of In(1/2A(L)/A(py)), where A(py) and A(L) are the abundance of the fragments retaining the pyridine (py) and L ligand, respectively, with E(1/2) and E(L) were found. This result shows that those electrochemical parameters are correlated with bond energies and can be used in the analysis of the dissociation data. Such modified Cooks method can be used, for example, to determine the electronic effects of substituents on the metal-ligand bonds for a series of transition-metal complexes. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism and the energy profile of the gas-phase reaction that mimics esterification under acidic conditions have been investigated at different levels of theory. These reactions are known to proceed with rate constants close to the collision limit in the gas-phase and questions have been raised as to whether the typical addition-elimination mechanism via a tetrahedral intermediate can explain the ease of these processes. Because these reactions are common to many organic and biochemical processes it is important to understand the intrinsic reactivity of these systems. Our calculations at different levels of theory reveal that a stepwise mechanism via a tetrahedral species is characterized by energy barriers that are inconsistent with the experimental results. For the thermoneutral exchange between protonated acetic acid and water and the exothermic reaction of protonated acetic acid and methanol our calculations show that these reactions proceed initially by a proton shuttle between the carbonyl oxygen and the hydroxy oxygen of acetic acid mediated by water, or methanol, followed by displacement at the acylium ion center. These findings suggest that the reactions in the gas-phase should be viewed as an acylium ion transfer reaction. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1596-1606, 2011