154 resultados para Plant-pathogen relationships


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazil is the largest sugarcane producer in the world, mainly due to the development of different management strategies. Recently, microbial-plant related studies revealed that bacterial isolates belonging to the genus Burkholderia are mainly associated with this plant and are responsible for a range of physiological activity. In this study, we properly evaluate the physiological activity and genetic diversity of endophytic and rhizospheric Burkholderia spp. isolates from sugarcane roots grown in the field in Brazil. In total, 39 isolates previously identified as Burkholderia spp. were firstly evaluated for the capability to fix nitrogen, produce siderophores, solubilise inorganic phosphates, produce indole-acetic acid and inhibit sugarcane phytopathogens in vitro. These results revealed that all isolates present at least two positive evaluated activities. Furthermore, a phylogenetic study was carried out using 16S rRNA and gyrB genes revealing that most of the isolates were affiliated with the Burkholderia cepacia complex. Hence, a clear separation given by endophytic or rhizospheric niche occupation was not observed. These results presented an overview about Burkholderia spp. isolates from sugarcane roots and supply information about the physiological activity and genetic diversity of this genus, given direction for further studies related to achieve more sustainable cultivation of sugarcane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by further spread through the inner tissues, resulting in endophytic colonization. The major factors contributing to these interactions are not always well understood for most bacterial and plant species. It is believed that specific bacterial functions are required for plant colonization, but also from the plant side specific features are needed, such as plant genotype (cultivar) and developmental stage. Via multivariate analysis we present a quantification of the roles of these components on the composition of root-associated and endophytic bacterial communities in potato plants, by weighing the effects of bacterial inoculation, plant genotype and developmental stage. Spontaneous rifampicin resistant mutants of two bacterial endophytes, Paenibacillus sp. strain E119 and Methylobacterium mesophilicum strain SR1.6/6, were introduced into potato plants of three different cultivars (Eersteling, Robijn and Karnico). Densities of both strains in, or attached to potato plants were measured by selective plating, while the effects of bacterial inoculation, plant genotype and developmental stage on the composition of bacterial, Alphaproteobacterial and Paenibacillus species were determined by PCR-denaturing gradient gel-electrophoresis (DGGE). Multivariate analyses revealed that the composition of bacterial communities was mainly driven by cultivar type and plant developmental stage, while Alphaproteobacterial and Paenibacillus communities were mainly influenced by bacterial inoculation. These results are important for better understanding the effects of bacterial inoculations to plants and their possible effects on the indigenous bacterial communities in relation with other plant factors such as genotype and growth stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the ionic speciation of reclaimed urban wastewater (RWW), and the impact of increasing RWW irrigation rates on soil properties and plant nutrition under field conditions. Most RWW elements (>66%) are readily available as NH(4)(+), Ca(2+), Mg(2+), K(+), SO(4)(2-), Cl(-), H(3)BO(3), Mn(2+) and Zn(2+), but in imbalanced proportion for plant nutrition. Lead, Cd, Cr and Al in RWW are mostly bounded with DOM or OH. Irrigation with RWW decreased soil acidity, which is beneficial to the acidic tropical soil. Although RWW irrigation builds exchangeable Na(+) up, the excessive Na(+) was leached out of the soil profile after a rainy summer season (>400 mm). Benefits of the disposal of RWW to the soil under tropical conditions were discussed, however, the over irrigation with RWW (>100% of crop evapotranspiration) led to a nutritional imbalance, accumulating S and leading to a plant deficiency of P and K. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rhizosphere constitutes a complex niche that may be exploited by a wide variety of bacteria. Bacterium-plant interactions in this niche can be influenced by factors such as the expression of heterologous genes in the plant. The objective of this work was to describe the bacterial communities associated with the rhizosphere and rhizoplane regions of tobacco plants, and to compare communities from transgenic tobacco lines (CAB1, CAB2 and TRP) with those found in wild-type (WT) plants. Samples were collected at two stages of plant development, the vegetative and flowering stages (1 and 3 months after germination). The diversity of the culturable microbial community was assessed by isolation and further characterization of isolates by amplified ribosomal RNA gene restriction analysis (ARDRA) and 16S rRNA sequencing. These analyses revealed the presence of fairly common rhizosphere organisms with the main groups Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Bacilli. Analysis of the total bacterial communities using PCR-DGGE (denaturing gradient gel electrophoresis) revealed that shifts in bacterial communities occurred during early plant development, but the reestablishment of original community structure was observed over time. The effects were smaller in rhizosphere than in rhizoplane samples, where selection of specific bacterial groups by the different plant lines was demonstrated. Clustering patterns and principal components analysis (PCA) were used to distinguish the plant lines according to the fingerprint of their associated bacterial communities. Bands differentially detected in plant lines were found to be affiliated with the genera Pantoea, Bacillus and Burkholderia in WT, CAB and TRP plants, respectively. The data revealed that, although rhizosphere/rhizoplane microbial communities can be affected by the cultivation of transgenic plants, soil resilience may be able to restore the original bacterial diversity after one cycle of plant cultivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is concern that the use of lower quality phosphate rock can result in elevated amounts of Fe-Al-P water-insoluble compounds in fertilizers and, consequently, low agronomic effectiveness. Therefore, studies were conducted to evaluate the effect of some of these compounds on plant growth. Four commercial superphosphates varying in chemical composition (two single and two triple superphosphates) were selected for the study. Fertilizer impurities were collected as water-insoluble residues by washing each P source with deionized water. A modal analysis, based primarily on elemental chemical analysis and x-ray diffractometry, was used to estimate the chemical composition of each P source. Water-soluble monocalcium phosphate (MCP) and the water-leached fertilizer residues were prepared to give a range of fertilizers in terms of water-soluble phosphorus (WSP) (0-100% of the available P as MCP). The water-leached fractions, MCP, and the mixtures of MCP with water-leached fractions were applied to supply 40 mg available P kg(1) to a thermic Rhodic Kanhapludult with pH values of 5.2 +/- 0.05 (unlimed) and 6.4 +/- 0.08 (limed). Wheat (Triticum aestivum L.) grown in a greenhouse for 101 d served as the test crop. The requirement for WSP was source and pH dependent. At a soil pH of 5.2, the fertilizers required 73 to 95% WSP to reach the maximum dry-matter yield, while they required 60 to 86% WSP at pH 6.4. To reach 90% of the maximum yield, all superphosphate fertilizers required <50% WSP. These results show that it is not always necessary to have high water solubility as required by legislation in many countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feed is responsible for about 70% of broilers production costs, leading to an increasing number of studies on alternative dietary products that benefit bird performance and lower production costs. Since the 1950s, antimicrobial additives are the most frequently used performance enhancers in animal production and their positive results are observed even in high-challenge conditions. Since the 1990s, due to the ban of the use of some antibiotics as growth promoters and the growing trend of the public to consume natural products, plant extracts have been researched as alternatives to antibiotic growth promoters. The first study that evaluated the antibacterial activities of plant extracts was carried out in 1881; however, they started to be used as flavor enhancers only during the next decades. With the emergence of antibiotics in the 1950s, the use of plant extracts as antimicrobial agents almost disappeared. There are several studies in literature assessing the use of plant extracts, individually or in combination, as antimicrobials, antioxidants, or digestibility enhancers in animal feeds. Research results on the factors affecting their action, such as plant variety, harvest time, processing, extraction, as well as the technology employed to manufacture the commercial product and dietary inclusion levels show controversial results, warranting the need of further research and standardization for the effective use of plant extracts as performance enhancers, when added to animal feeds. This article aims at presenting plant extracts as alternatives to antibiotics, explaining their main modes of action as performance enhancers in broiler production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial farming of carnivorous fish demands the reduction of environmental impact of feeds; that requires minimal use of dietary animal protein. This study investigated the digestibility of diets formulated exclusively out of plant protein, added feed attractants, by the carnivore largemouth bass, Micropterus salmoides. Juvenile largemouth bass (14.0 +/- 1.0 cm) conditioned to accept artificial, dry feed were confined in polypropylene cages and fed ad libitum in three daily meals, seven experimental diets containing varying levels of vegetable and animal protein sources, added of different feed stimulants. After last daily meal, cages were transferred to cylindrical-conical-bottomed, 200-L aquaria, where faeces were collected by sedimentation into refrigerated containers, preserved and later analysed for chemical composition. Soybean meal can be used as partial substitute of animal protein in diets for largemouth bass; the poultry by-product meal shows as a good option as animal protein source in these rations. Control treatment - 50PP : 50AP - yielded best performances; the need for the use of fish meal in the formulation for carnivorous diets is, at least, questionable. Results of the digestibility trials demonstrated the importance of determining the diet digestibility, if precision in the formulation of least-cost feeds for carnivorous fish is the ultimate goal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Warm-season grasses are economically important for cattle production in tropical regions, and tools to aid in management and research of these forages would be highly beneficial. Crop simulation models synthesize numerous physiological processes and are important research tools for evaluating production of warm-season grasses. This research was conducted to adapt the perennial CROPGRO Forage model to simulate growth of the tropical species palisadegrass [Brachiaria brizantha (A. Rich.) Stapf. cv. Xaraes] and to describe model adaptation for this species. In order to develop the CROPGRO parameters for this species, we began with values and relationships reported in the literature. Some parameters and relationships were calibrated by comparison with observed growth, development, dry matter accumulation and partitioning during a 2-year experiment with Xaraes palisadegrass in Piracicaba, SP, Brazil. Starting with parameters for the bahiagrass (Paspalum notatum Flugge) perennial forage model, dormancy effects had to be minimized, and partitioning to storage tissue/root decreased, and partitioning to leaf and stem increased to provide for more leaf and stem growth and less root. Parameters affecting specific leaf area (SLA) and senescence of plant tissues were improved. After these changes were made to the model, biomass accumulation was better simulated, mean predicted herbage yield per cycle was 3573 kg ha(-1), with a RMSE of 538 kg DM ha(-1) (D-Stat = 0.838, simulated/observed ratio = 1.028). The results of the adaptation suggest that the CROPGRO model is an efficient tool to integrate physiological aspects of palisadegrass and can be used to simulate growth. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific leaf area (SLA; m(leaf)(2) kg(leaf)(-1)) is a key ecophysiological parameter influencing leaf physiology, photosynthesis, and whole plant carbon gain. Both individual tree-based models and other forest process-based models are generally highly sensitive to this parameter, but information on its temporal or within-stand variability is still scarce. In a 2-4-year-old Eucalyptus plantation in Congo, prone to seasonal drought, the within-stand and seasonal variability in SLA were investigated by means of destructive sampling carried out at 2-month intervals, over a 2-year period. Within-crown vertical gradients of SLA were small. Highly significant relationships were found between tree-average SLA (SLA(t)) and tree size (tree height, H(t), or diameter at breast height, DBH): SLA(t) ranged from about 9 m(2) kg(-1) for dominant trees to about 14-15 m(2) kg(-1) for the smallest trees. The decrease in SLA(t) with increasing tree size was accurately predicted from DBH using power functions. Stand-average SLA varied by about 20% during the year, with lowest values at the end of the 5-month dry season, and highest values about 2-3 months after the onset of the wet season. Variability in leaf water status according to tree size and season is discussed as a possible determinant of both the within-stand and seasonal variations in SM. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant volatiles function as important signals for herbivores, parasitoids, predators, and neighboring plants. Herbivore attack can dramatically increase plant volatile emissions in many species. However, plants do not only react to herbivore-inflicted damage, but also already start adjusting their metabolism upon egg deposition by insects. Several studies have found evidence that egg deposition itself can induce the release of volatiles, but little is known about the effects of oviposition on the volatiles released in response to subsequent herbivory. To study this we measured the effect of oviposition by Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) moths on constitutive and herbivore-induced volatiles in maize (Zea mays L.). Results demonstrate that egg deposition reduces the constitutive emission of volatiles and suppresses the typical burst of inducible volatiles following mechanical damage and application of caterpillar regurgitant, a treatment that mimics herbivory. We discuss the possible mechanisms responsible for reducing the plant`s signaling capacity triggered by S. frugiperda oviposition and how suppression of volatile organic compounds can influence the interaction between the plant, the herbivore, and other organisms in its environment. Future studies should consider oviposition as a potential modulator of plant responses to insect herbivores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Influence of light and leaf epicuticular wax layer on Phakopsora pachyrhizi infection in soybean Asian rust, caused by the fungus Phakopsora pachyrhizi, is one of the most serious phytosanitary problems of soybean in Brazil, especially because no cultivars with satisfactory resistance levels as yet exist. The objective of this study was to evaluate the influence of luminosity and of leaf epicuticular wax on the infection of soybean by P. pachyrhizi. The adaxial and abaxial leaflet surfaces of the first trifoliate leaf from cultivar BRS 154, phenological stage V2, were inoculated with a suspension of 105 uredospores/mL. The plants were kept for 24 hours in a humid chamber at temperature of 23 degrees C, in light or dark conditions, using a factorial design. Subsequently, the plants were maintained for 14 days under a 12-hour photoperiod. The disease severity and density were evaluated. For in vitro experiments, in light or dark conditions, the evaluation was done in terms of uredospore germination and appressorium formation. The wax content of adaxial and abaxial leaflets was analyzed quantitatively using chloroform extraction and ultrastructurally using scanning electron microscope. Higher density and severity were observed when the adaxial surface was inoculated, with later incubation of the plants in the dark, with no significant interaction between these factors. Spore germination in the dark (40.7%) was statistically different from spore germination in the light (28.5%). The same effect was observed with appressorium formation, in the dark (24.7%) and in the light (12.8%). The quantity and the ultrastructural aspects of epicuticular wax content did not show differences between the adaxial and abaxial surfaces; nor did they show any effect on infection by Phakopsora pachyrhizi in the soybean cultivar studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relationship between occurrence of Panama disease in banana trees of cv. Nanicao and nutrients in soil and leaves The objective of the present work was to verify if the incited symptoms in banana trees cv. Nanicao, belonging to the subgroup Cavendish, in Vale do Ribeira, are related to levels of nutrients in soil and leaves. Sixteen areas in Vale do Ribeira were selected, one half with symptomatic plants and the other with healthy plants. In those areas the third leaf of five plants and the soil near those plants were collected, at depths from 0 to 20 cm and from 20 to 40 cm. At both depths of the sampled soil, levels of Ca, Mg, PO(4)(-3), S and cationic exchange capacity (CEC) were significantly different among the areas, and the low values of these elements were present in the areas containing symptomatic plants. At both depths, Mg, Al and H in relation to CEC were significantly different among the areas, and the low values of Mg and high of Al and H were present in the areas with symptomatic plants. The N, K and S in the leaves were significantly different among the areas. These elements showed low values in the areas containing symptomatic plants. Despite the fact that some amounts of macronutrients of the soil and of the leaves are present only in the areas containing plants of Nanicao with symptoms similar to fusariosis, proof of a possible occurrence of race of the pathogen should be looked for in Vale do Ribeira.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Influence of soybean phenological stage and leaflets age on infection by Phakopsora pachyrhizi This work was conducted to study the influence of soybean growth stage and leaf age on the infection of Phakopsora pachyrhizi, the soybean rust pathogen. Soybean plants (cv. BRS 154 and BRS 258) at the V(3), R(1) and R(5) growth stages were inoculated with a 1 x 10(5) urediniospores per mL suspension. After a period of 24 hours in dew chambers, all plants were removed from the chambers and placed under greenhouse conditions for 20 days. Mean latent period (PLM) and disease severity were estimated. The susceptibility of trifoliate leaves to soybean rust was estimated on cv. BRS 154 at the growth stage R5. Pathogen inoculation was done at the first four trifoliate leaves. Fifteen days after inoculation, leaflets of each trefoil were evaluated for disease severity, lesion mean size and infection frequency. Plants` growth stage did not influence the PLM. Cultivars BRS 154 and BRS 258 presented PLM of 8 and 9 days, respectively. There was no difference in disease severity at the growth stages V(3) and R(1), but those values were higher than at the R(5) growth stage, 8 days after inoculation. The oldest trefoil showed the highest disease values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty endophytic bacteria were isolated from the meristematic tissues of three varieties of strawberry cultivated in vitro, and further identified, by FAME profile, into the genera Bacillus and Sphingopyxis. The strains were also characterized according to indole acetic acid production, phosphate solubilization and potential for plant growth promotion. Results showed that 15 strains produced high levels of IAA and all 20 showed potential for solubilizing inorganic phosphate. Plant growth promotion evaluated under greenhouse conditions revealed the ability of the strains to enhance the root number, length and dry weight and also the leaf number, petiole length and dry weight of the aerial portion. Seven Bacillus spp. strains promoted root development and one strain of Sphingopyxis sp. promoted the development of plant shoots. The plant growth promotion showed to be correlated to IAA production and phosphate solubilization. The data also suggested that bacterial effects could potentially be harnessed to promote plant growth during seedling acclimatization in strawberry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological sources for the control of plant pathogenic fungi remain an important objective for sustainable agricultural practices. Actinomycetes are used extensively in the pharmaceutical industry and agriculture owing to their great diversity in enzyme production. In the present study, therefore, we evaluated chitinase production by endophytic actinomycetes and the potential of this for control of phytopathogenic fungi. Endophytic Streptomyces were grown on minimum medium supplemented with chitin, and chitinase production was quantified. The strains were screened for any activity towards phytopathogenic fungi and oomycetes by a dual-culture in vitro assay. The correlation between chitinase production and pathogen inhibition was calculated and further confirmed on Colletotrichum sublineolum cell walls by scanning electron microscopy. This paper reports a genetic correlation between chitinase production and the biocontrol potential of endophytic actinomycetes in an antagonistic interaction with different phytopathogens, suggesting that this control could occur inside the host plant. A genetic correlation between chitinase production and pathogen inhibition was demonstrated. Our results provide an enhanced understanding of endophytic Streptomyces and its potential as a biocontrol agent. The implications and applications of these data for biocontrol are discussed.