229 resultados para Ocimum minimum
Resumo:
Fluid dynamic analysis is an important branch of several chemical engineering related areas, such as drying processes and chemical reactors. However, aspects concerning fluid dynamics in wastewater treatment bioreactors still require further investigation, as they highly influence process efficiency. Therefore, it is essential to evaluate the influence of biofilm on the reactor fluid dynamic behavior, through the analysis of a few important parameters, such as minimum fluidization velocity, bed expansion and porosity, and particle terminal velocity. The main objective of the present work was to investigate the fluid dynamics of an anaerobic fluidized bed reactor, having activated carbon particles as support media for biomass immobilization. Reactor performance was tested using synthetic residual water, which was prepared using the solution employed in BOD determination. The results showed that the presence of immobilized biomass increased particle density and altered the main fluid dynamic parameters investigated.
Resumo:
This work evaluates the glass formation of selected alloys based on the Ti-Zr-Fe-Co system, assuming the synergy of two distinct criteria: minimum topological instability and average electronegativity plots. Combining the minimum topological instability and the average electronegativity values result in a plot in which the most probable good glass former compositions are identified Ti-Zr rich alloys with Fe and Co additions were produced, compared against the final plot, and the best glass forming alloy composition was found to be very close the theoretically predicted ones on the Ti-Zr rich side, for both Ti-Zr-Fe and Ti-Zr-Co systems. (C) 2009 Elsevier B V All rights reserved
Resumo:
The GERIPA project aimed at generating renewable energy integrated with food production has led to a beneficial option for producing ethanol and electricity. Ethanol has economic, social and environmental potential. Considering just the first one, Brazil consumes 39 billion litres per year-L(D)/yr of diesel oil, 18% of it being imported. The Federal Government has a recovery programme for the soybean agribusiness aimed at soybean biodiesel (SBD) production in which a 10% addition to diesel has been proposed. This 10% involves producing 10.7 million L(SB)/d. Soybean bio-diesel production is not self-sustainable and such proposal could require an annual subsidy of up to US$1.33 billion. Soybean plantations would need about 10 to 12 times more land than is necessary for sugarcane plantations to produce the same equivalent thermal energy (ETE). Sixty-seven GERIPA projects (GP) producing 80,000 litres of ethanol per day (GP80) could be set up with the sum of US$1.33 billion; this would substitute current Brazilian biodiesel demand by 4.28%, adding the some value for each new subsidiary. Considering ETE, ethanol-GP cost would be 37% to 50% below that for a litre of SBD on account of its raw material (RM) and region. The diesel cycle`s thermal efficiency (eta(1)) yield is around 50% and that of the Otto cycle engine eta(1) is around 37%. The cost per km driven (CKD) by substituting SBD for ethanol-GP80 would thus indicate an 18% minimum and 59% maximum cost reduction for vehicle engines.
Resumo:
This technical note develops information filter and array algorithms for a linear minimum mean square error estimator of discrete-time Markovian jump linear systems. A numerical example for a two-mode Markovian jump linear system, to show the advantage of using array algorithms to filter this class of systems, is provided.
Resumo:
In this paper a computational implementation of an evolutionary algorithm (EA) is shown in order to tackle the problem of reconfiguring radial distribution systems. The developed module considers power quality indices such as long duration interruptions and customer process disruptions due to voltage sags, by using the Monte Carlo simulation method. Power quality costs are modeled into the mathematical problem formulation, which are added to the cost of network losses. As for the EA codification proposed, a decimal representation is used. The EA operators, namely selection, recombination and mutation, which are considered for the reconfiguration algorithm, are herein analyzed. A number of selection procedures are analyzed, namely tournament, elitism and a mixed technique using both elitism and tournament. The recombination operator was developed by considering a chromosome structure representation that maps the network branches and system radiality, and another structure that takes into account the network topology and feasibility of network operation to exchange genetic material. The topologies regarding the initial population are randomly produced so as radial configurations are produced through the Prim and Kruskal algorithms that rapidly build minimum spanning trees. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We assess the effect of the choice of spanwise periodic length on simulations of the flow around a fixed circular cylinder. The Reynolds number is set to 400 because, at this value, both lift coefficient and shedding frequency show significant drop due to three-dimensional flow structures. From the analysis of the three-dimensionalities of the wake and of the integral quantities such as Strouhal number, RMS of lift coefficient and energy contained in the three-dimensional portion of the flow we obtain an estimate of the minimum spanwise length to satisfactorily represent the flow. Furthermore, we observe a distinct wake behavior when the spanwise length is approximately the mode B instability wavelength. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The ability to control both the minimum size of holes and the minimum size of structural members are essential requirements in the topology optimization design process for manufacturing. This paper addresses both requirements by means of a unified approach involving mesh-independent projection techniques. An inverse projection is developed to control the minimum hole size while a standard direct projection scheme is used to control the minimum length of structural members. In addition, a heuristic scheme combining both contrasting requirements simultaneously is discussed. Two topology optimization implementations are contributed: one in which the projection (either inverse or direct) is used at each iteration; and the other in which a two-phase scheme is explored. In the first phase, the compliance minimization is carried out without any projection until convergence. In the second phase, the chosen projection scheme is applied iteratively until a solution is obtained while satisfying either the minimum member size or minimum hole size. Examples demonstrate the various features of the projection-based techniques presented.
Resumo:
Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures-FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method.
Resumo:
The electrochemical behaviour of a near-beta Ti-13Nb-13Zr alloy for the application as implants was investigated in various solutions. The electrolytes used were 0.9 wt% NaCl solution, Hanks` solution and a culture medium known as minimum essential medium (MEM) composed of salts, vitamins and amino acids, all at 37 degrees C. The electrochemical behaviour was investigated by the following electrochemical techniques: open circuit potential measurements as a function of time, electrochemical impedance spectroscopy (EIS) and determination of polarisation curves. The obtained results showed that the Ti alloy was passive in all electrolytes. The EIS results were analysed using an equivalent electrical circuit representing a duplex structure oxide layer, composed of an inner barrier layer, mainly responsible for the alloy corrosion resistance, and an outer and porous layer that has been associated to osteointegration ability. The properties of both layers were dependent on the electrolyte used. The results suggested that the thickest porous layer is formed in the MEM solution whereas the impedance of the barrier layer formed in this solution was the lowest among the electrolytes used. The polarisation curves showed a current increase at potentials around 1300 mV versus saturated calomel electrode (SCE), and this increase was also dependent on the electrolyte used. The highest increase in current density was also associated to the MEM solution suggesting that this is the most aggressive electrolyte to the Ti alloy among the three tested solutions.
Resumo:
The cost of a new ship design heavily depends on the principal dimensions of the ship; however, dimensions minimization often conflicts with the minimum oil outflow (in the event of an accidental spill). This study demonstrates one rational methodology for selecting the optimal dimensions and coefficients of form of tankers via the use of a genetic algorithm. Therein, a multi-objective optimization problem was formulated by using two objective attributes in the evaluation of each design, specifically, total cost and mean oil outflow. In addition, a procedure that can be used to balance the designs in terms of weight and useful space is proposed. A genetic algorithm was implemented to search for optimal design parameters and to identify the nondominated Pareto frontier. At the end of this study, three real ships are used as case studies. [DOI:10.1115/1.4002740]
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Minimal pasteurization of orange juice (OJ) consists of using minimum holding time and temperature to ensure partial inactivation of pectin methylesterase (PME). This process produces juice with preserved sensory attributes and has a better acceptance by consumers when compared with commercially pasteurized OJ. Sensory profile and physical-chemical characteristics of minimally processed OJ was determined, during refrigerated storage, for two OJ blends with different pH values and the same level of PME thermal inactivation. A selected and trained sensorial panel (n = 16) performed sensory analysis, based on a quantitative descriptive analysis, twice a week for 30 days, evaluating the attributes of appearance (suspended particles and color intensity), odor (natural orange and fermented orange) and flavor (orange characteristic, fermented orange, acid and bitter taste). Storage presented great effect on OJ sensory profile; however, it was not noticeable on physical-chemical characteristics.
Resumo:
Recent works have pointed to the use of volatile electrolytes such as carbon dioxide (CO(2)) dissolved in aqueous solutions as a promising alternative to the precipitating agents conventionally used for protein recovery in the food and pharmaceutical industries. In this work we investigated experimental and theoretical aspects of the precipitation of porcine insulin, a biomolecule of pharmaceutical interest, using CO(2) as an acid- precipitating agent. The Solubility of porcine insulin in NaHCO(3) solutions in pressurized CO(2) was determined as a function of temperature and pressure, with a minimum being observed close to the protein isoclectric point. A thermodynamic model was developed and successfully utilized to correlate the experimental data. Insulin was considered a polyelectrolyte in the model and its self-association reactions were also taken into account. The biological activity of insulin was maintained after precipitation With CO(2), although some activity can be lost if foam is formed in the depressurization step. Biotechnol. Bioeng. 2009;103: 909-919. (C) 2009 Wiley Periodicals, Inc.
Resumo:
We address here aspects of the implementation of a memory evolutive system (MES), based on the model proposed by A. Ehresmann and J. Vanbremeersch (2007), by means of a simulated network of spiking neurons with time dependent plasticity. We point out the advantages and challenges of applying category theory for the representation of cognition, by using the MES architecture. Then we discuss the issues concerning the minimum requirements that an artificial neural network (ANN) should fulfill in order that it would be capable of expressing the categories and mappings between them, underlying the MES. We conclude that a pulsed ANN based on Izhikevich`s formal neuron with STDP (spike time-dependent plasticity) has sufficient dynamical properties to achieve these requirements, provided it can cope with the topological requirements. Finally, we present some perspectives of future research concerning the proposed ANN topology.
Resumo:
The thermoelastic properties of ferropericlase Mg(1-x)Fe(x)O (x = 0.1875) throughout the iron high-to-low spin cross-over have been investigated by first principles at Earth`s lower mantle conditions. This cross-over has important consequences for elasticity such as an anomalous bulk modulus (K(S)) reduction. At room temperature the anomaly is somewhat sharp in pressure but broadens with increasing temperature. Along a typical geotherm it occurs across most of the lower mantle with a more significant K(S) reduction at approximate to 1,400-1,600 km depth. This anomaly might also cause a reduction in the effective activation energy for diffusion creep and lead to a viscosity minimum in the mid-lower mantle, in apparent agreement with results from inversion of data related with mantle convection and postglacial rebound.