145 resultados para Near-infrared range
Resumo:
A search for a sidereal modulation in the MINOS near detector neutrino data was performed. If present, this signature could be a consequence of Lorentz and CPT violation as predicted by the effective field theory called the standard-model extension. No evidence for a sidereal signal in the data set was found, implying that there is no significant change in neutrino propagation that depends on the direction of the neutrino beam in a sun-centered inertial frame. Upper limits on the magnitudes of the Lorentz and CPT violating terms in the standard-model extension lie between 10(-4) and 10(-2) of the maximum expected, assuming a suppression of these signatures by a factor of 10(-17).
Resumo:
We present Monte Carlo simulations for a molecular motor system found in virtually all eukaryotic cells, the acto-myosin motor system, composed of a group of organic macromolecules. Cell motors were mapped to an Ising-like model, where the interaction field is transmitted through a tropomyosin polymer chain. The presence of Ca(2+) induces tropomyosin to block or unblock binding sites of the myosin motor leading to its activation or deactivation. We used the Metropolis algorithm to find the transient and the equilibrium states of the acto-myosin system composed of solvent, actin, tropomyosin, troponin, Ca(2+), and myosin-S1 at a given temperature, including the spatial configuration of tropomyosin on the actin filament surface. Our model describes the short- and long-range cooperativity during actin-myosin binding which emerges from the bending stiffness of the tropomyosin complex. We found all transition rates between the states only using the interaction energy of the constituents. The agreement between our model and experimental data also supports the recent theory of flexible tropomyosin.
Resumo:
The dynamic polarizability and optical absorption spectrum of liquid water in the 6-15 eV energy range are investigated by a sequential molecular dynamics (MD)/quantum mechanical approach. The MD simulations are based on a polarizable model for liquid water. Calculation of electronic properties relies on time-dependent density functional and equation-of-motion coupled-cluster theories. Results for the dynamic polarizability, Cauchy moments, S(-2), S(-4), S(-6), and dielectric properties of liquid water are reported. The theoretical predictions for the optical absorption spectrum of liquid water are in good agreement with experimental information.
Resumo:
Azimuthal angle (Delta phi) correlations are presented for a broad range of transverse momentum (0.4 < p(T) < 10 GeV/c) and centrality (0-92%) selections for charged hadrons from dijets in Au+Au collisions at root s(NN) = 200 GeV. With increasing p(T), the away-side Delta phi distribution evolves from a broad and relatively flat shape to a concave shape, then to a convex shape. Comparisons with p + p data suggest that the away-side distribution can be divided into a partially suppressed ""head"" region centered at Delta phi similar to pi, and an enhanced ""shoulder"" region centered at Delta phi similar to pi +/- 1.1. The p(T) spectrum for the associated hadrons in the head region softens toward central collisions. The spectral slope for the shoulder region is independent of centrality and trigger p(T). The properties of the near-side distributions are also modified relative to those in p + p collisions, reflected by the broadening of the jet shape in Delta phi and Delta eta, and an enhancement of the per-trigger yield. However, these modifications seem to be limited to p(T)less than or similar to 4 GeV/c, above which both the hadron pair shape and per-trigger yield become similar to p + p collisions. These observations suggest that both the away- and near-side distributions contain a jet fragmentation component which dominates for p(T) greater than or similar to 5 GeV/c and a medium-induced component which is important for p(T) less than or similar to 4 GeV/c. We also quantify the role of jets at intermediate and low p(T) through the yield of jet-induced pairs in comparison with binary scaled p + p pair yield. The yield of jet-induced pairs is suppressed at high pair proxy energy (sum of the p(T) magnitudes of the two hadrons) and is enhanced at low pair proxy energy. The former is consistent with jet quenching; the latter is consistent with the enhancement of soft hadron pairs due to transport of lost energy to lower p(T).
Resumo:
In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.
Resumo:
We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity sigma(xy) approximate to 0 and in a minimum of diagonal conductivity sigma(xx) at nu = nu(p) - nu(n) = 0, where nu(n) and nu(p) are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole ""snake states'' propagating along the nu = 0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.
Resumo:
Second harmonic generation is strictly forbidden in centrosymmetric materials, within the electric dipole approximation. Recently, it was found that the centrosymmetric magnetic semiconductors EuTe and EuSe can generate near-gap second harmonics, if the system is submitted to an external magnetic field. Here, a theoretical model is presented, which well describes the observed phenomena. The model shows that second harmonic generation becomes efficient when the magnetic dipole oscillations between the band-edge excited states of the system, induced by the excitation light, enter the in-phase regime, which can be achieved by applying a magnetic field to the material.
Resumo:
We report results of magnetoacoustic studies in the quantum spin-chain magnet NiCl(2)-4SC(NH(2))(2) (DTN) having a field-induced ordered antiferromagnetic (AF) phase. In the vicinity of the quantum critical points (QCPs) the acoustic c(33) mode manifests a pronounced softening accompanied by energy dissipation of the sound wave. The acoustic anomalies are traced up to T > T(N), where the thermodynamic properties are determined by fermionic magnetic excitations, the ""hallmark"" of one-dimensional (1D) spin chains. On the other hand, as established in earlier studies, the AF phase in DTN is governed by bosonic magnetic excitations. Our results suggest the presence of a crossover from a 1D fermionic to a three-dimensional bosonic character of the magnetic excitations in DTN in the vicinity of the QCPs.
Resumo:
The adsorption of atomic and molecular hydrogen on armchair and zigzag boron carbonitride nanotubes is investigated within the ab initio density functional theory. The adsorption of atomic H on the BC(2)N nanotubes presents properties which are promising for nanoelectronic applications. Depending on the adsorption site for the H, the Fermi energy moves toward the bottom of the conduction band or toward the top of the valence band, leading the system to exhibit donor or acceptor characteristics, respectively. The H(2) molecules are physisorbed on the BC(2)N surface for both chiralities. The binding energies for the H(2) molecules are slightly dependent on the adsorption site, and they are near to the range to work as a hydrogen storage medium.
Resumo:
Charged-particle spectra associated with direct photon (gamma(dir)) and pi(0) are measured in p + p and Au + Au collisions at center-of-mass energy root(S)(NN) = 200 GeV with the STAR detector at the Relativistic Heavy Ion Collider. A shower-shape analysis is used to partially discriminate between gamma(dir) and pi(0). Assuming no associated charged particles in the gamma(dir) direction ( near side) and small contribution from fragmentation photons (gamma(frag)), the associated charged-particle yields opposite to gamma(dir) (away side) are extracted. In central Au + Au collisions, the charged-particle yields at midrapidity (vertical bar eta vertical bar < 1) and high transverse momentum (3 < (assoc)(PT) < 16 GeV/c) associated with gamma(dir) and pi(0) (vertical bar eta vertical bar < 0.9, 8 < (trig)(PT) < 16 GeV/c) are suppressed by a factor of 3-5 compared with p + p collisions. The observed suppression of the associated charged particles is similar for gamma(dir) and pi(0) and independent of the gamma(dir) energy within uncertainties. These measurements indicate that, in the kinematic range covered and within our current experimental uncertainties, the parton energy loss shows no sensitivity to the parton initial energy, path length, or color charge.
Resumo:
We report on a measurement of the gamma(1S + 2S + 3S) -> e(+)e(-) cross section at midrapidity in p + p collisions at root s = 200 GeV. We find the cross section to be 114 +/- 38(stat + fit)(-24)(+23)(syst) pb. Perturbative QCD calculations at next-to-leading order in the color evaporation model are in agreement with our measurement, while calculations in the color singlet model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of gamma data to RHIC energies. The dielectron continuum in the invariant-mass range near the gamma is also studied to obtain a combined yield of e(+)e(-) pairs from the sum of the Drell-Yan process and b-(b) over bar production.
Resumo:
We report the first three-particle coincidence measurement in pseudorapidity (Delta eta) between a high transverse momentum (p(perpendicular to)) trigger particle and two lower p(perpendicular to) associated particles within azimuth |Delta phi| < 0.7 in root s(NN) = 200 GeV d + Au and Au + Au collisions. Charge ordering properties are exploited to separate the jetlike component and the ridge (long range Delta eta correlation). The results indicate that the correlation of ridge particles are uniform not only with respect to the trigger particle but also between themselves event by event in our measured Delta eta. In addition, the production of the ridge appears to be uncorrelated to the presence of the narrow jetlike component.
Resumo:
The STAR Collaboration at the Relativistic Heavy Ion Collider presents a systematic study of high-transverse-momentum charged-di-hadron correlations at small azimuthal pair separation Delta phi in d+Au and central Au+Au collisions at s(NN)=200 GeV. Significant correlated yield for pairs with large longitudinal separation Delta eta is observed in central Au+Au collisions, in contrast to d+Au collisions. The associated yield distribution in Delta eta x Delta phi can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component that is narrow in Delta phi and depends only weakly on Delta eta, the ""ridge."" Using two systematically independent determinations of the background normalization and shape, finite ridge yield is found to persist for trigger p(t)>6 GeV/c, indicating that it is correlated with jet production. The transverse-momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range (2 < p(t)< 4 GeV/c).
Resumo:
Fusion cross sections were measured for the exotic proton-halo nucleus (8)B incident on a (58)Ni target at several energies near the Coulomb barrier. This is the first experiment to report on the fusion of a protonhalo nucleus. The resulting excitation function shows a striking enhancement with respect to expectations for normal projectiles. Evidence is presented that the sum of the fusion and breakup yields saturates the total reaction cross section.
Resumo:
Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au + Au and p + p collisions at root s(NN) = 200 GeV. Strong short- and long-range correlations (LRC) are seen in central Au + Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short-range correlations are observed in peripheral Au + Au collisions. Both the dual parton model (DPM) and the color glass condensate (CGC) predict the existence of the long-range correlations. In the DPM, the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC, longitudinal color flux tubes generate the LRC. The data are in qualitative agreement with the predictions of the DPM and indicate the presence of multiple parton interactions.