217 resultados para Materiali compositi, CFRP, Combined Loading Compression (CLC) test method
Resumo:
Although use of high-strength reinforced concrete (RC) jackets has become common practice worldwide, there are still two unresolved issues regarding the contribution of the original concrete and the effects of existing loads. Twelve RC-jacketed columns were tested with and without preloading under uniaxial compression. Tests showed the entire core to contribute to the capacity of the jacketed column, as long as adequate confinement is provided. Also, preloading does not adversely affect the capacity of the jacketed column, while it may increase its deformability, especially in square sections. Transverse reinforcement in the jacket directly improves ductility of the strengthened column, especially in circular sections.
Resumo:
A weathering classification for granitic rock materials from southeastern Brazil was framed based on core characteristics. The classification was substantiated by a detailed petrographic study. Indirect assessment of weathering grades by density, ultrasonic and Schmidt hammer index tests was performed. Rebound values due to Schmidt hammer multiple impacts at one representative point were more efficient in predicting weathering grades than averaged single impact rebound values, P-wave velocities and densities. Uniaxial compression tests revealed that a large range of uniaxial compressive strength (214-153 MPa) exists in Grade I category where weathering does not seem to have played any role. It was concluded that variability in occurrences of quartz intragranular cracks and in biotite percentage, distribution and orientation might have played a key role in accelerating or decelerating the failure processes of the Grade I specimens. Deterioration of uniaxial compressive strength and elastic modulus and increase in Poisson`s ratio with increasing weathering intensity could be attributed to alteration of minerals, disruption of rock skeleton and microcrack augmentation. A crude relation between failure modes and weathering grades also emerged.
Resumo:
The purpose of this study was to present a methodology with superior efficiency for inactivating pathogenic indicators commonly found in domestic sewage. The adopted method was based on synergistic effect resulting from the introduction of a UV radiation pre-disinfection stage of sewage followed by secondary treatment. A pilot unit was installed in the sewage treatment plant of the University of Sao Paulo to simulate the combined system in full-scale operational conditions. Its performance was evaluated through microbiological examinations for determining Escherichia coli, total coliforms and coliphages. The application of UV radiation at 5.1mW/cm(2) for 10 s of exposure in the first disinfection stage was enough to reduce the surviving number of E. coli around 100 times, in comparison to the conventional method. Therefore, based on experimental data, it is possible to conclude that combining treatment and pre-disinfection stage is an effective potential technique to produce effluents with lower degree of contamination by pathogenic organisms.
Resumo:
The aim of this work was to investigate the effect of different feeding times (2, 4, and 6 h) and organic loading rates (3, 6 and 12 gCOD l(-1) day(-1)) on the performance of an anaerobic sequencing batch reactor containing immobilized biomass, as well as to verify the minimum amount of alkalinity that can be added to the influent. The reactor, in which mixing was achieved by recirculation of the liquid phase, was maintained at 30 +/- 1A degrees C, possessed 2.5 l reactional volume and treated 1.5 l cheese whey in 8-h cycles. Results showed that the effect of feeding time on reactor performance was more pronounced at higher values of organic loading rates (OLR). During operation at an OLR of 3 gCOD l(-1) day(-1), change in feeding time did not affect efficiency of organic matter removal from the reactor. At an OLR of 6 gCOD l(-1) day(-1), reactor efficiency improved in relation to the lower loading rate and tended to drop at longer feeding times. At an OLR of 12 gCOD l(-1) day(-1) the reactor showed to depend more on feeding time; higher feeding times resulted in a decrease in reactor efficiency. Under all conditions shock loads of 24 gCOD l(-1) day(-1) caused an increase in acids concentration in the effluent. However, despite this increase, the reactor regained stability readily and alkalinity supplied to the influent showed to be sufficient to maintain pH close to neutral during operation. Regardless of applied OLR, operation with feeding time of 2 h was which provided improved stability and rendered the process less susceptible to shock loads.
Resumo:
An investigation was performed on the effect of temperature and organic load on the stability and efficiency of a 1.8-L fluidized-bed anaerobic sequencing batch reactor (ASBR), containing granulated biomass. Assays were carried out employing superficial up How velocity of 7 m/h, total cycle length of 6 h and synthetic wastewater volume of 1.3 L per cycle. The fluidized-bed ASH was operated at 15, 20, 25 and 30 degrees C with influent organic matter concentrations of 500 and 1000 mgCOD/L The system showed stability under all conditions and presented filtered samples removal efficiency ranging from 79 to 86%. A first-order kinetic model could be fitted to the experimental values of the organic matter concentration profiles. The specific kinetic parameter values of this model ranged from 0.0435 to 0.2360 L/(gTVS h) at the implemented operation conditions. in addition, from the slope of an Arrhenius plot, the activation energy values were calculated to be 16,729 and 12,673 cal/mol for operation with 500 and 1000 mgCOD/L, respectively. These results show that treatment of synthetic wastewater. with concentration of 500 mgCOD/L, was more sensitive to temperature variations than treatment of the same residue with concentration of 1000 mgCOD/L. Comparing the activation energy value for operation at 500 mgCOD/L with the value obtained by Agibert et al. (S.A. Agibert, M.B. Moreira, S.M. Ratusznei, J.A.D. Rodrigues, M. Zaiat, E. Foresti. Influence of temperature on performance of an ASBBR with circulation applied to treatment of low-strength wastewater. journal of Applied Biochemistry and Biotechnology, 136 (2007) 193-206) in an ASBBR treating the same wastewater at the same concentration, the value obtained in the fluidized-bed ASBR showed to be superior, indicating that treatment of synthetic wastewater in a reactor containing granulated biomass was more sensitive to temperature variations than the treatment using immobilized biomass. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a technological viability study of wastewater treatment in an automobile industry by an anaerobic sequencing batch biofilm reactor containing immobilized biomass (AnSBBR) with a draft tube. The reactor was operated in 8-h cycles, with agitation of 400 rpm, at 30 degrees C and treating 2.0 L wastewater per cycle. Initially the efficiency and stability of the reactor were studied when supplied with nutrients and alkalinity. Removal efficiency of 88% was obtained at volumetric loading rate (VLR) of 3.09 mg COD/L day. When VLR was increased to 6.19 mg COD/L day the system presented stable operation with reduction in efficiency of 71%. In a second stage the AnSBBR was operated treating wastewater in natura, i.e., without nutrients supplementation, only with alkalinity, thereby changing feed strategy. The first strategy consisted in feeding 2.0 L batch wise (10 min), the second in feeding 1.0 L of influent batch wise (10 min) and an additional 1.0 L fed-batch wise (4 h), both dewatering 2.0 L of the effluent in 10 min. The third one maintained 1.0 L of treated effluent in the reactor, without discharging, and 1.0 L of influent was fed fed-batch wise (4 h) with dewatering 1.0 L of the effluent in 10 min. For all implemented strategies (VLR of 1.40, 2.57 and 2.61 mg COD/L day) the system presented stability and removal efficiency of approximately 80%. These results show that the AnSBBR presents operational flexibility, as the influent can be fed according to industry availability. In industrial processes this is a considerable advantage, as the influent may be prone to variations. Moreover, for all the investigated conditions the kinetic parameters were obtained from fitting a first-order model to the profiles of organic matter, total volatile acids and methane concentrations. Analysis of the kinetic parameters showed that the best strategy is feeding 1.0 L of influent batchwise (10 min) and 1.0 L fed-batch wise (4 h) in 8-h cycle. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Converting aeroelastic vibrations into electricity for low power generation has received growing attention over the past few years. In addition to potential applications for aerospace structures, the goal is to develop alternative and scalable configurations for wind energy harvesting to use in wireless electronic systems. This paper presents modeling and experiments of aeroelastic energy harvesting using piezoelectric transduction with a focus on exploiting combined nonlinearities. An airfoil with plunge and pitch degrees of freedom (DOF) is investigated. Piezoelectric coupling is introduced to the plunge DOF while nonlinearities are introduced through the pitch DOF. A state-space model is presented and employed for the simulations of the piezoaeroelastic generator. A two-state approximation to Theodorsen aerodynamics is used in order to determine the unsteady aerodynamic loads. Three case studies are presented. First the interaction between piezoelectric power generation and linear aeroelastic behavior of a typical section is investigated for a set of resistive loads. Model predictions are compared to experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limit-cycle oscillations can be obtained not only above but also below the linear flutter speed. The experimental results are successfully predicted by the model simulations. Finally, the combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch DOF. The nonlinear piezoaeroelastic response is investigated for different values of the nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a wider range of airflow speeds. Such nonlinearities can be introduced to aeroelastic energy harvesters (exploiting piezoelectric or other transduction mechanisms) for performance enhancement.
Resumo:
This paper describes the procedures of the analysis Of Pollutant gases, as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) emitted by engines, using high-resolution gas chromatography (HRGC). In a broad sense, CI engine burning diesel was compared with B10 and a drastic reduction was observed in the emissions of the aromatic compounds by using B10. Especially for benzene, the reduction of concentrations occurs on the level of about 19.5%. Although a concentration value below 1 mu g ml(-1) has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper focuses on the flexural behavior of RC beams externally strengthened with Carbon Fiber Reinforced Polymers (CFRP) fabric. A non-linear finite element (FE) analysis strategy is proposed to support the beam flexural behavior experimental analysis. A development system (QUEBRA2D/FEMOOP programs) has been used to accomplish the numerical simulation. Appropriate constitutive models for concrete, rebars, CFRP and bond-slip interfaces have been implemented and adjusted to represent the composite system behavior. Interface and truss finite elements have been implemented (discrete and embedded approaches) for the numerical representation of rebars, interfaces and composites.
Resumo:
The study of absorption refrigeration systems has had increasing importance in recent years due to the fact that the primary energy that is used in an absorption system can be heat available from a residual source or even a renewable one. Therefore, these systems not only use energy that would be rejected by the environment, but also they avoid the consumption of expensive fossil or electrical energies. The production cost of the mechanical work necessary to obtain a kW of refrigeration for mechanical compression cycle is normally higher than the cost for recovering the needed heat to obtain the same kW in an absorption cycle. Also, the use of these systems reduces impact on the environment by decreasing the emission of CO(2). We intend to show the performance of a hybrid absorption-ejecto compression chiller compared to conventional double- and single-effect water/lithium bromide systems, by means of an exergetic and exergoeconomic analysis of these configurations in order to calculate the exergy-based cost of a final product. The vapor compression refrigeration system is included in the results, as a comparisson to the performance of the absorption refrigeration systems analyzed.
Resumo:
The micro-scale abrasive wear test by rotative ball has gained large acceptance in universities and research centers, being widely used in studies on the abrasive wear of materials. Two wear modes are usually observed in this type of test: ""rolling abrasion"" results when the abrasive particles roll on the surface of the tested specimen, while ""grooving abrasion"" is observed when the abrasive particles slide; the type of wear mode has a significant effect on the overall behaviour of a tribological system. Several works on the friction coefficient during abrasive wear tests are available in the literature, but only a few were dedicated to the friction coefficient in micro-abrasive wear tests conducted with rotating ball. Additionally, recent works have identified that results may also be affected by the change in contact pressure that occurs when tests are conducted with constant applied force. Thus, the purpose of this work is to study the relationship between friction coefficient and abrasive wear modes in ball-cratering wear tests conducted at ""constant normal force"" and ""constant pressure"". Micro-scale abrasive wear tests were conducted with a ball of AISI52100 steel and a specimen of AISIH10 tool steel. The abrasive slurry was prepared with black silicon carbide (SiC) particles (average particle size of 3 mu m) and distilled water. Two constant normal force values and two constant pressure values were selected for the tests. The tangential and normal loads were monitored throughout the tests and their ratio was calculated to provide an indication of the friction coefficient. In all cases, optical microscopy analysis of the worn craters revelated only the presence of grooving abrasion. However, a more detailed analysis conducted by SEM has indicated that different degrees of rolling abrasion have also occurred along the grooves. The results have also shown that: (i) for the selected values of constant normal force and constant pressure, the friction coefficient presents, approximately, the same range of values and (ii) loading conditions play an important role on the occurrence of rolling abrasion or grooving abrasion and, consequently, on the average value and scatter of the friction coefficient in micro-abrasive wear tests. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Many works have shown the potential of the Brazilian sugarcane industry as an electricity supplier. However, few studies have studied how this potential could be achieved without jeopardizing the production of sugar and ethanol. Also, the impact of modifications in the cogeneration plant on the costs of production of sugar and ethanol has not been evaluated. This paper presents an approach to the problem of exergy optimization of cogeneration systems in sugarcane mills. A general model to the sugar and ethanol production processes is developed based on data supplied by a real plant, and an exergy analysis is performed. A discussion is made about the variables that most affect the performance of the processes. Then, a procedure is presented to evaluate modifications in the cogeneration system and in the process, and their impact on the production costs of sugar, ethanol and electricity. Furthermore, a discussion on the renewability of processes is made based on an exergy index of renewability. As a general conclusion, besides adding a new revenue to the mill, the generation of excess electricity improves the exergo-environmental performance of the mill as a whole. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The paper presents and discusses experimental procedures, visual observations and test results considered important to obtain data that can be used in validation of constitutive relations and failure criteria. The aim is to investigate the combined effects of stress intensity, stress-triaxiality and Lode parameter on the material response and failure behavior of aluminum alloys. Smooth and pre-notched tensile and shear specimens were manufactured from both very thin sheets and thicker plates to cover a wide range of stress triaxialities and Lode parameters. In addition, modified Arcan specimens were designed allowing investigation of the effect of sudden changes in stress states and deformation modes on the material behavior. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The time varying intensity character of a load applied to a structure poses many difficulties in analysis. A remedy to this situation is to substitute a complex pulse shape by a rectangular equivalent one. It has been shown by others that this procedure works well for perfectly plastic elementary structures. This paper applies the concept of equivalent pulse to more complex structures. Special attention is given to the material behavior, which is allowed to be strain rate and strain hardening sensitive. Thanks to the explicit finite element solution, it is shown in this article that blast loads applied to complex structures made of real materials can be substituted by equivalent rectangular loads with both responses being practically the same. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Wetting balance tests of copper sheets submerged in tin solder baths were carried out in a completely automatic wetting balance. Wetting curves were examined for three different values of sheet thickness and four different solder bath temperatures. Most of the wetting curves showed a distorted shape relative to that of a standard curve, preventing calculation of important wetting parameters, such as the wetting rate and the wetting force. The wetting tests showed that the distortion increased for a thicker sheet thickness and a lower solder bath temperature, being the result of solder bath solidification around the submerged sheet substrate. (C) 2008 Elsevier B.V. All rights reserved.