120 resultados para Introgressive hybridization
Resumo:
We report a case of a 47-year-old man diagnosed with chronic lymphocytic leukemia (CLL) with two extra copies of chromosome 8. Classical cytogenetic analysis by the immunostimulatory combination of DSP30 and interleukin 2 showed tetrasomy of chromosome 8 in 60% of the metaphase cells (48,XY,+8,+8[12]/46,XY[8]). Spectral karyotype analysis confirmed the abnormality previously seen by G banding. Additionally, interphase fluorescence in situ hybridization using an LSI CEP 8 probe performed on peripheral blood cells without any stimulant agent showed tetrasomy of chromosome 8 in 54% of analyzed cells (108 of 200). To our knowledge, tetrasomy 8 as the sole chromosomal abnormality in CLL has not been previously described. The prognostic significance of tetrasomy 8 in CLL remains to be elucidated. However, the patient has been followed up in the outpatient hospital since 2004 without any therapeutic intervention and has so far remained stable. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Trichophyton rubrum is a dermatophyte that infects human skin and nails. Its growth on keratin as its carbon source shifts the ambient pH from acidic to alkaline, which may be an efficient strategy for its successful infection and maintenance in the host. In this study, we used suppression subtractive hybridization to identify genes preferentially expressed in T rubrum incubated at either pH 5.0 or pH 8.0. The functional grouping of the 341 overexpressed unigenes indicated proteins putatively involved in diverse cellular processes, such as membrane remodeling, cellular transport, metabolism, cellular protection, fungal pathogenesis, gene regulation, interaction with the environment, and iron uptake. Although the basic metabolic machinery identified under both growth conditions seems to be functionally similar, distinct genes are upregulated at acidic or alkaline pHs. We also isolated a large number of genes of unknown function, probably unique to T rubrum or dermatophytes. Interestingly, the transcriptional profiling of several genes in a pacC mutant suggests that, in T rubrum, the transcription factor PacC has a diversity of metabolic functions, in response to either acidic or alkaline ambient pH. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
HIV-1-infected patients frequently have opportunistic esophageal infections which, when associated with severe immunodeficiency, can be attributed to unusual pathogens. The clinical presentation of several esophageal diseases is similar and the best method for a specific diagnosis of these patients has not been well defined. To evaluate the role of the polymerase chain reaction (PCR) in the etiologic definition of esophageal ulcers in HIV-1-infected patients, 96 esophageal biopsies from 79 HIV-1-infected patients were processed by PCR using specific primers for cytomegalovirus (CMV), herpes virus (HSV), human papilloma virus (HPV), HIV-1, Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium intracellulare, Treponema pallidum, and Haemophilus ducreyi. The PCR results were compared to the histopathologic results. Seventy-nine patients were studied (mean age: 34 years; 62% men; median CD4 + T cell = 103.59 cells/mu l (range 1-795.2 cells/mu l). The most common endoscopic findings were as follows: esophageal candidiasis (37.1%), esophageal ulcers (24.7%), esophagitis (11.2%), and lugol-negative areas (10.1%). The histopathologic findings in the esophageal ulcers (22 biopsies) were non-specific inflammation (31.8%), HSV (36.4%), Candida (13.6%), CMV (13.6%), or HPV disease (4.5%). In the esophageal ulcer biopsies, the PCR results were negative in 27.6% of cases, and positive for HIV (65.5%), CMV (31%), HPV (20.7%), HSV (10.3%), and H. ducreyi (6.9%). The histopathologic examination did not identify a pathogen or identified only Candida in 15 biopsies of esophageal ulcers. PCR was positive in ten (66.7%) and negative in five (33.3%) of these biopsies (idiopathic ulcers). PCR detected: HIV (53.3%), CMV (20%), HPV (13.3%), and H. ducreyi (6,7%). PCR detected more etiologic agents in esophageal ulcers than histopathology and was able to detect unusual pathogens. On the other hand, sometimes more than one pathogen was detected in the esophageal ulcers, making it difficult to reach an accurate diagnosis. This finding indicates the need for more studies to evaluate the benefit of this method in the routine evaluation of esophageal ulcer biopsies in HIV-1-infected patients.
Resumo:
Gene expression profiling by cDNA microarrays during murine thymus ontogeny has contributed to dissecting the large-scale molecular genetics of T cell maturation. Gene profiling, although useful for characterizing the thymus developmental phases and identifying the differentially expressed genes, does not permit the determination of possible interactions between genes. In order to reconstruct genetic interactions, on RNA level, within thymocyte differentiation, a pair of microarrays containing a total of 1,576 cDNA sequences derived from the IMAGE MTB library was applied on samples of developing thymuses (14-17 days of gestation). The data were analyzed using the GeneNetwork program. Genes that were previously identified as differentially expressed during thymus ontogeny showed their relationships with several other genes. The present method provided the detection of gene nodes coding for proteins implicated in the calcium signaling pathway, such as Prrg2 and Stxbp3, and in protein transport toward the cell membrane, such as Gosr2. The results demonstrate the feasibility of reconstructing networks based on cDNA microarray gene expression determinations, contributing to a clearer understanding of the complex interactions between genes involved in thymus/thymocyte development.
Resumo:
Synovial sarcomas are high-grade malignant mesenchymal tumors that account for 10% of all soft-tissue sarcomas. Almost 95% of these tumors are characterized by a nonrandom chromosomal abnormality, t(X;18)(p11.2;q11.2), that is observed in both biphasic and monophasic variants. In this article, we present the case of a 57-year-old woman diagnosed with high-grade biphasic synovial sarcoma in which conventional cytogenetic analysis revealed the constant presence of a unique t(18;22)(q12;q13), in addition to trisomy 8. The rearrangement was confirmed by fluorescence in situ hybridization. The use of the whole chromosome painting probes WCPX did not detect any rearrangements involving chromosome X, although reverse-transcriptase polymerase chain reaction (PCR) analysis demonstrated the conspicuous presence of a SYT/SXX1 fusion gene. Spectral karyotyping (SKY) was also performed and revealed an insertion of material from chromosome 18 into one of the X chromosomes at position Xp11.2. Thus, the karyotype was subsequently interpreted as 47,X,der(X)ins(X;18) (p11.2;q11.2q11.2),der(18)del(18)(q11.2q11.2)t(18;22)(q12;q13),der(22)t(18;22). Real-time PCR analysis of BCL2 expression in the tumor sample showed a 433-fold increase. This rare finding exemplifies that thorough molecular-cytogenetic analyses are required to elucidate complex and/or cryptic tumor-specific translocations. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Cytogenetic studies of atypical choroid plexus papillomas (CPP) have been poorly described. In the present report, the cytogenetic investigation of an atypical CPP occurring in an infant is detailed. CPP chromosome preparations were analyzed by giemsa-trypsin-banding (GTG-banding) and comparative genome hybridization (CGH). Conventional karyotype analysis of tumor culture showed a normal chromosome complement. The results were confirmed by CGH, showing normal hybridization patterns for the sample. To date, the few atypical CPPs described in the literature have shown disparate cytogenetic information. This is the first report of a normal chromosome complement in atypical CPP. The heterogenic genetic features observed in these small series may reflect the diverse genetic background of choroid plexus tumors in children.
Resumo:
Bovine Herpesvirus type-5 (BoHV-5), which is potentially neuropathogenic, was recently described to be related with reproductive disorders in cows. The objective was to elucidate mechanisms involved in propagation of BoHV-5 in embryonic cells. For this purpose, bovine embryos produced in vitro were assayed for apoptotic markers after experimental infection of oocytes, in vitro fertilization, and development. Host DNA fragmentation was detected with a TUNEL assay, expression of annexin-V was measured with indirect immunofluorescence, and viral DNA was detected with in situ hybridization. Infective BoHV-5 virus was recovered from embryos derived from exposed oocytes after two consecutive passages on Madin-Darby bovine kidney (MDBK) cells. The viral DNA corresponding to US9 gene, localized between nucleotides 126243 to 126493, was detected in situ and amplified. There was no significant difference between the ratio of TUNEL stained nuclei and total cells in good quality blastocysts (0.87 +/- 0.05, mean SD), but there were differences (P < 0.05) between infected (0.18 +/- 0.05) and uninfected blastocysts (0.73 +/- 0.07). The Annexin-V label was more intense in uninfected embryos (0.79 +/- 0.04; P < 0.05). The quality of infected and uninfected embryos was considered equal, with no significant effect on embryonic development. In conclusion, we inferred that BoHV-5 infected bovine oocytes, replicated, and suppressed some apoptotic pathways, without significantly affecting embryonic development. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In this study, we aimed at determining whether human immature dental pulp stem cells (hIDPSC) would be able to contribute to different cell types in mouse blastocysts without damaging them. Also, we analysed whether these blastocysts would progress further into embryogenesis when implanted to the uterus of foster mice, and develop human/mouse chimaera with retention of hIDPSC derivates and their differentiation. hIDPSC and mouse blastocysts were used in this study. Fluorescence staining of hIDPSC and injection into mouse blastocysts, was performed. Histology, immunohistochemistry, fluorescence in situ hybridization and confocal microscopy were carried out. hIDPSC showed biological compatibility with the mouse host environment and could survive, proliferate and contribute to the inner cell mass as well as to the trophoblast cell layer after introduction into early mouse embryos (n = 28), which achieved the hatching stage following 24 and 48 h in culture. When transferred to foster mice (n = 5), these blastocysts with hIDPSC (n = 57) yielded embryos (n = 3) and foetuses (n = 6); demonstrating presence of human cells in various organs, such as brain, liver, intestine and hearts, of the human/mouse chimaeras. We verified whether hIDPSC would also be able to differentiate into specific cell types in the mouse environment. Contribution of hIDPSC in at least two types of tissues (muscles and epithelial), was confirmed. We showed that hIDPSC survived, proliferated and differentiated in mouse developing blastocysts and were capable of producing human/mouse chimaeras.
Resumo:
Objective. TGIF1 homeobox gene involvement in oral cancer has not yet been investigated. This study analyzed the expression of TGIF1 transcripts and protein in oral squamous cell carcinoma (OSCC). Study design. Snap-frozen samples from 16 patients were taken from both OSCC and nontumoral adjacent epithelium (NT) for in situ hybridization (ISH). Forty-six paraffin-embedded samples of OSCC were submitted to immunohistochemistry (IHC). A descriptive analysis of the transcript signal detection was accomplished, and TGIF1 immunoexpression was carried out considering protein levels, localization, and cellular differentiation. Results. ISH reactions showed TGIF1 transcripts with a signal that was frequently intense in NT, and generally weak in OSCC, and that had stronger transcript signal in well-differentiated areas of OSCC when compared with poorly differentiated ones. IHC reactions had poorly differentiated cases associated with TGIF1 protein expression in both the nucleus and cytoplasm (P = .05, Fisher test). Conclusions. TGIF1 gain or loss of function might possibly play a role in oral cancer cell differentiation. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 111: 218-224)
Resumo:
In this study, Bmp-4, Wnt-5a and Shh gene expressions were compared during early craniofacial development in mice by comparative non-isotopic in situ hybridization. Wild-type C57BL/6J mice were studied at various stages of embryonic development (from 8.5- to 13.5-day-old embryos - E8.5-13.5). During early odontogenesis, transcripts for Bmp-4, Shh and Wnt-5a were co-localised at the tooth initiation stage. At E8.5, Shh mRNA expression was restricted to diencephalon and pharyngeal endoderm. Before maxillae and mandible ossification, Bmp-4 and Wnt-5a signals were detected in the mesenchymal cells and around Meckel`s cartilage. During palatogenesis, Shh was expressed only in the epithelium and Wnt-5a only in the mesenchyme of the elevating palatal shelves. During tongue development, Shh expression was found in mesenchyme, probably contributing to tongue miogenesis, while Wnt-5a signal was in the epithelium, possibly during placode development and papillae formation. Taken together, these findings suggest that Bmp-4, Shh and Wnt-5a gene expressions may act together on the epithelial mesenchymal interactions occurring in several aspects of the early mouse craniofacial development, such as odontogenesis, neuronal development, maxillae and mandible ossification, palatogenesis and tongue formation. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
c-Jun, one of the components of the transcription factor activating protein-1 (AP-1), is suggested as a factor in malignant progression of oral lesions. c-Jun and other AP-1 components relationships with human papillomavirus (HPV) infection have been investigated, but not yet focusing on oral carcinogenesis. The aim of this study was to verify whether c-Jun immunohistochemical expression is related to HPV DNA detection in oral premalignant and malignant lesions. Fifty cases diagnosed as oral leukoplakias, with different degrees of epithelial dysplasia, and as oral squamous cell carcinomas (OSCC) were submitted to immunohistochemistry to detect c-Jun and to in situ hybridization with signal amplification to assess HPV DNA. It was verified that c-Jun nuclear expression increased according to the degree of dysplasia within the lesion, with the greatest expression in OSCC. The same did not happen concerning HPV infection - a discrete proportional relation was observed in indexes found in leukoplakia with no dysplasia, leukoplakia with dysplasia and OSCC, but statistically insignificant. When separating the group of leukoplakia by degrees of dysplasia, this relation of proportion was not observed. Nevertheless, the overall prevalence of HPV infection was 24% and the high-risk HPV types were the most frequently identified, which does not allow excluding HPV as a risk factor in oral carcinogenesis. When relating c-Jun expression and HPV infection, no statistically significant relationship is observed. Results suggest then that malignant progression mediated by c-Jun is independent of the presence of HPV in oral carcinogenesis. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In the course of attempting to define the bone ""secretome"" using a signal-trap screening approach, we identified a gene encoding a small membrane protein novel to osteoblasts. Although previously identified in silico as ifitm5, no localization or functional studies had been undertaken on this gene. We characterized the expression patterns and localization of this gene in vitro and in vivo and assessed its role in matrix mineralization in vitro. The bone specificity and shown role in mineralization led us to rename the gene bone restricted ifitm-like protein (Bril). Bril encodes a 14.8-kDa 1.34 arnino acid protein with two transmembrane domains. Northern blot analysis showed bone-specific expression with no expression in other embryonic or adult tissues. In situ hybridization and immunohistochemistry in mouse embryos showed expression localized on the developing bone. Screening of cell lines showed Bril expression to be highest in osteoblasts, associated with the onset of matrix maturation/mineralization, suggesting a role in bone formation. Functional evidence of a role in mineralization was shown by adenovirus-mediated Brit overexpression and lentivirus-mediated Bril shRNA knockdown in vitro. Elevated Bril resulted in dose-dependent increases in mineralization in UMR106 and rat primary osteoblasts. Conversely, knockdown of Bril in MC3T3 osteoblasts resulted in reduced mineralization. Thus, we identified Bril as a novel osteoblast protein and showed a role in mineralization, possibly identifying a new regulatory pathway in bone formation.
Resumo:
The aim of this in vitro study was to evaluate bacterial leakage along the implant-abutment interface under unloaded conditions. Twelve premachined abutments with plastic sleeves and 12 dental implants were used in this study. Prior to tests of bacterial leakage, samples from the inner parts of the implants were collected with sterile microbrushes to serve as negative controls for contamination. After casting, the abutments were tightened to 32 Ncm on the implants. The assemblies were immersed in 2.0 mL of human saliva and incubated for 7 days. After this period, possible contamination of the internal parts of the implants was evaluated using the DNA Checkerboard method. Microorganisms were found in the internal surfaces of all the implants evaluated. Aggregatibacter actinomycetemcomitans and Capnocytophaga gingivalis were the most incident species. No microorganisms were found in the samples recovered from the implants before contamination testing (negative control). Bacterial species from human saliva may penetrate the implant-abutment interface under unloaded conditions. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:782-787
Resumo:
Objectives Bacterial penetration along the implant-abutment interface as a consequence of abutment screw loosening has been reported in a number of recent studies. The aim of this in vitro study was to investigate the influence of repeated tightening of the abutment screw on leakage of Streptococcus mutans along the interface between implants and pre-machined abutments. Materials and methods Twenty pre-machined abutments with a plastic sleeve were used. The abutment screws were tightened to 32 N cm in group 1 (n=10 - control) and to 32 N cm, loosened and re-tightened with the same torque twice in group 2 (n=10). The assemblies were completely immersed in 5 ml of Tryptic Soy Broth medium inoculated with S. mutans and incubated for 14 days. After this period, contamination of the implant internal threaded chamber was evaluated using the DNA Checkerboard method. Results Microorganisms were found on the internal surfaces of both groups evaluated. However, bacterial counts in group 2 were significantly higher than that in the control group (P < 0.05). Conclusion These results suggest that bacterial leakage between implants and abutments occurs even under unloaded conditions and at a higher intensity when the abutment screw is tightened and loosened repeatedly. To cite this article:do Nascimento C, Pedrazzi V, Kirsten Miani P, Daher Moreira L, de Albuquerque Junior RF. Influence of repeated screw tightening on bacterial leakage along the implant-abutment interface.Clin. Oral Impl. Res. 20, 2009; 1394-1397.doi: 10.1111/j.1600-0501.2009.01769.x.
Resumo:
To investigate the effect of the home use of a disclosing agent on the microbial composition of denture biofilm, by means of a cross-over randomized clinical trial. Two interventions were tested during 7 days each: (i) oral and denture hygiene instructions and (ii) instructions associated with the home use of a disclosing agent (1% neutral red). Eleven participants with visible biofilm deposits over their maxillary complete dentures were randomly assigned to one of the two sequences of interventions: (i) I followed by II, and (ii) II followed by I. A washout period of 7 days was established. After each intervention, samples of denture biofilm were evaluated by DNA checkerboard hybridization for the detection of Candida spp. and 17 bacterial species. Counts were low for all the tested species, and no significant difference was found between the tested interventions ( Wilcoxon test, P > 0.05). The home use of a disclosing agent does not remarkably change the composition of denture biofilm.