267 resultados para FULLY STABILIZED ZIRCONIA
Resumo:
A simple and completely general representation of the exact exchange-correlation functional of density-functional theory is derived from the universal Lieb-Oxford bound, which holds for any Coulomb-interacting system. This representation leads to an alternative point of view on popular hybrid functionals, providing a rationale for why they work and how they can be constructed. A similar representation of the exact correlation functional allows to construct fully nonempirical hyper-generalized-gradient approximations (HGGAs), radically departing from established paradigms of functional construction. Numerical tests of these HGGAs for atomic and molecular correlation energies and molecular atomization energies show that even simple HGGAs match or outperform state-of-the-art correlation functionals currently used in solid-state physics and quantum chemistry.
Resumo:
The title compound, C(13)H(9)F(3)N(2)O(2)S, crystallizes with two independent molecules in the asymmetric unit. The central thiourea core is roughly coplanar with the furan and benzene rings, showing O-C-N-C(S) torsion angles of 2.3 (4) and -11.4 (2) degrees and (S) C -N-C-C torsion angles of -2.4 (4) and -28.8 (4) degrees, respectively, in the two independent molecules. The trans-cis geometry of the thiourea fragment is stabilized by an intramolecular N-H center dot center dot center dot O hydrogen bond between the H atom of the cis thioamide and the carbonyl O atom. In the crystal structure, intermolecular N-H center dot center dot center dot S hydrogen bonds form centrosymmetric dimers extending along the b axis.
Resumo:
The title compound [systematic name: 3 beta-lup-20(29)-en-3-ol], C(30)H(50)O, was isolated from the leaves of Garcinia brasiliensis (common name: bacupari; a member of the Guttiferae family) and has been shown to have many useful medicinal and biological properties. The lupeol molecule consists of four six-membered rings (adopting chair conformations) and one five-membered ring (with an envelope conformation), all fused in trans fashion. Lupeol is isomorphic with the pentacyclic triterpene 3 beta,30-dihydroxylup-20(29)-ene, which differs from lupeol due to the presence of an additional hydroxy group. The crystal packing is stabilized by van der Waals interactions and intermolecular O-H center dot center dot center dot O hydrogen bonds, giving rise to an infinite helical chain along the c axis.
Resumo:
The title compound, C13H12N2O2S, was synthesized from furoyl isothiocyanate and o-toluidine in dry acetone. The thiourea group is in the thioamide form. The central thiourea fragment makes dihedral angles of 2.6 (1) and 22.4 (1)degrees with the ketofuran group and the benzene ring, respectively. The molecular structure is stabilized by N-H...O hydrogen bonds. In the crystal structure, centrosymmetrically related molecules are linked by a pair of N-H...S hydrogen bonds to form a dimer with an R-2(2)(6) ring motif.
Resumo:
The title compound, C13H9N3O2S, was synthesized from furoyl isothiocyanate and 3-aminobenzonitrile in dry acetone. The thiourea group is in the thioamide form. The thiourea fragment makes dihedral angles of 3.91 (16) and 37.83 (12)degrees with the ketofuran group and the benzene ring, respectively. The molecular geometry is stabilized by N-H center dot center dot center dot O hydrogen bonds. In the crystal structure, centrosymmetrically related molecules are linked by two intermolecular N-H center dot center dot center dot S hydrogen bonds to form dimers.
Resumo:
Transparent conducting oxides (TCO) are widely used in technological applications ranging from photovoltaics to thin-film transparent field-effect transistors. In this work we report a first-principles investigation, based on density-functional theory, of the atomic and electronic properties of Ga(2)O(3)(ZnO)(6) (GZO(6)), which is a promising candidate to be used as host oxide for wide band gap TCO applications. We identify a low-energy configuration for the coherent distribution of the Ga and Zn atoms in the cation positions within the experimentally reported orthorhombic GZO(6) structure. Four Ga atoms are located in four-fold sites, while the remaining 12 Ga atoms in the unit cell form four shared Ga agglomerates (a motif of four atoms). The Zn atoms are distributed in the remaining cation sites with effective coordination numbers from 3.90 to 4.50. Furthermore, we identify the natural formation of twin-boundaries in GZO(6), which can explain the zigzag modulations observed experimentally by high-resolution transmission electron microscopy in GZO(n) (n=9). Due to the intrinsic twin-boundary formation, polarity inversion in the ZnO tetrahedrons is present which is facilitated by the formation of the Ga agglomerates. Our analysis shows that the formation of fourfold Ga sites and Ga agglomerates are stabilized by the electronic octet rule, while the distribution of Ga atoms and the formation of the twin-boundary help alleviate excess strain. Finally we identify that the electronic properties of GZO(6) are essentially determined by the electronic properties of ZnO, i.e., there are slight changes in the band gap and optical absorption properties.
Resumo:
In the title compound, C(16)H(12)N(2)O(2)S, the carbonylthiourea group forms dihedral angles of 75.4 (1) and 13.1 (2)degrees, respectively, with the naphthalene ring system and furan ring. The molecule adopts a trans-cis configuration with respect to the positions of the furoyl and naphthyl groups relative to the S atom across the thiourea C-N bonds. This geometry is stabilized by an N-H center dot center dot center dot center dot O intramolecular hydrogen bond. In the crystal structure, molecules are linked by N-H center dot center dot center dot S hydrogen bonds, forming centrosymmetric dimers which are interlinked through C-H center dot center dot center dot pi interactions.
Resumo:
During a polymorphism screening of hydroxybenzophenone derivatives, a monohydrate pseudopolymorph of (3,4-dihydroxyphenyl)(phenyl)methanone, C(13)H(10)O(3)center dot H(2)O, (I), was obtained. Structural relationships and the role of water in crystal assembly were established on the basis of the known anhydrous form [Cox, Kechagias & Kelly (2008). Acta Cryst. B64, 206-216]. The crystal packing of (I) is stabilized by classical intermolecular O-H...O hydrogen bonds, generating a three-dimensional network.
Resumo:
We study induced modules of nonzero central charge with arbitrary multiplicities over affine Lie algebras. For a given pseudo parabolic subalgebra P of an affine Lie algebra G, our main result establishes the equivalence between a certain category of P-induced G-modules and the category of weight P-modules with injective action of the central element of G. In particular, the induction functor preserves irreducible modules. If P is a parabolic subalgebra with a finite-dimensional Levi factor then it defines a unique pseudo parabolic subalgebra P(ps), P subset of P(ps). The structure of P-induced modules in this case is fully determined by the structure of P(ps)-induced modules. These results generalize similar reductions in particular cases previously considered by V. Futorny, S. Konig, V. Mazorchuk [Forum Math. 13 (2001), 641-661], B. Cox [Pacific J. Math. 165 (1994), 269-294] and I. Dimitrov, V. Futorny, I. Penkov [Comm. Math. Phys. 250 (2004), 47-63].
Resumo:
In the title hydrate, C(16)H(15)BrO(2)SSe center dot H(2)O, the sulfinyl O atom lies on the opposite side of the molecule to the Se and carbonyl O atoms. The benzene rings form a dihedral angle of 51.66 (17)degrees and are splayed with respect to each other. The observed conformation allows the water molecules to bridge sulfinyl O atoms via O-H center dot center dot center dot O hydrogen bonds, generating a linear supramolecular chain along the b axis; the chain is further stabilized by C-H center dot center dot center dot O contacts. The chains are held in place in the crystal structure by C center dot center dot center dot H center dot center dot center dot pi and C-Br center dot center dot center dot pi interactions.
Resumo:
The title compound, C(10)H(11)BrN(2)O(3), exhibits a small twist between the amide residue and benzene ring [the C-N-C-C torsion angle = 12.7 (4)degrees]. The crystal structure is stabilized by weak N-H center dot center dot center dot O, C-H center dot center dot center dot Br and C-H center dot center dot center dot O interactions. These lead to supramolecular layers in the bc plane.
Resumo:
Black carbon (BC) may play ail important role in the global C budget, due to its potential to act as a significant sink of atmospheric CO(2). In order to fully evaluate the influence of BC oil the global C cycle, in understanding of the stability of BC is required. The biochemical stability of BC was assessed in a chronosequence of high-BC-containing Anthrosols from the central Amazon, Brazil, using a range of spectroscopic and biological methods. Results revealed that the Anthrosols had 61-80% lower (P < 0.05) CO(2) evolution per unit C over 532 days compared to their respective adjacent soils with low BC contents. No significant (P > 0.05) difference in CO(2) respiration per unit C was observed between Anthrosols with contrasting ages of BC (600-8700 years BP) Lind soil textures (0.3-36% clay). Similarly, the molecular composition of the core regions of micrometer-sized BC particles quantified by synchrotron-based Near-Edge X-ray Fine Structure (NEXAFS) spectroscopy coupled to Scanning Transmission X-ray Microscopy (STXM) remained similar regardless of their ages and closely resembled the spectral characteristics or fresh BC. BC decomposed extremely slowly to ail extent that it was not possible to detect chemical changes between Youngest and oldest samples, as also confirmed by X-ray Photoelectron Spectroscopy (XPS). Deconvolution of NEXAFS spectra revealed greater oxidation oil the surfaces of BC particles with little penetration into the core of the particles. The similar C mineralization between different BC-rich soils regardless of soil texture underpins the importance of chemical recalcitrance for the stability of BC, in contrast to adjacent soils which showed the highest mineralization in the sandiest soil. However, the BC-rich Anthrosols had higher proportions (72-90%) of C in the more stable organo-mineral fraction than BC-poor adjacent soils (2-70%), Suggesting some degree of physical stabilization. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Phaethornis longuemareus aethopyga was described by John T. Zimmer in 1950 and treated as a valid subspecies until it was proposed that the three known specimens were hybrids between R ruber and P. rupurumii amazonicus. On the basis of some recently collected specimens, we reevaluated the validity of P. l. aethopyga. Despite showing some differences related to age and sex, all specimens agree in the general plumage pattern and are fully diagnosable when compared with any other taxon of the genus. The hypothesis of a hybrid origin becomes unsustainable when one notes that (1) P. l. aethopyga has characters that are unique and absent in the purported parental species, such as the white outer margins at the base of the rectrices; and (2) P. l. aethopyga occurs far from the distribution of one of the alleged parental species. Furthermore, field data show that P. l. aethopyga has attributes typical of a valid and independent taxon, such as lekking behavior. Therefore, given its overall diagnosis, P. aethopyga could at least be treated as a phylogenetic species. Yet its morphological and vocal distinctiveness with respect to other Phaethornis spp. in the ""Pygmornis group"" is greater than that observed between some species pairs traditionally regarded as separate biological species within the group, which supports its recognition as a species under the biological species concept. Received 13 July 2008, accepted 9 March 2009.
Resumo:
Live aboveground biomass (AGB) is an important source of uncertainty in the carbon balance from the tropical regions in part due scarcity of reliable estimates of live AGB and its variation across landscapes and forest types. Studies of forest structure and biomass stocks of Neotropical forests are biased toward Amazonian and Central American sites. In particular, standardized estimates of aboveground biomass stocks for the Brazilian Atlantic forest are rarely available. Notwithstanding the role of environmental variables that control the distribution and abundance of biomass in tropical lowland forests has been the subject of considerable research, the effect of short, steep elevational gradients on tropical forest structure and carbon dynamics is not well known. In order to evaluate forest structure and live AGB variation along an elevational gradient (0-1100 m a.s.l.) of coastal Atlantic Forest in SE Brazil, we carried out a standard census of woody stems >= 4.8 cm dbh in 13 1-ha permanent plots established on four different sites in 2006-2007. Live AGB ranged from 166.3 Mg ha(-1) (bootstrapped 95% CI: 1444,187.0) to 283.2 Mg ha(-1) (bootstrapped 95% CI: 253.0,325.2) and increased with elevation. We found that local-scale topographic variation associated with elevation influences the distribution of trees >50 cm dbh and total live AGB. Across all elevations, we found more stems (64-75%) with limited crown illumination but the largest proportion of the live AGB (68-85%) was stored in stems with highly illuminated or fully exposed crowns. Topography, disturbance and associated changes in light and nutrient supply probably control biomass distribution along this short but representative elevational gradient. Our findings also showed that intact Atlantic forest sites stored substantial amounts of carbon aboveground. The live tree AGB of the stands was found to be lower than Central Amazonian forests, but within the range of Neotropical forests, in particular when compared to Central American forests. Our comparative data suggests that differences in live tree AGB among Neotropical forests are probably related to the heterogeneous distribution of large and medium-sized diameter trees within forests and how the live biomass is partitioned among those size classes, in accordance with general trends found by previous studies. In addition, the elevational variation in live AGB stocks suggests a large spatial variability over coastal Atlantic forests in Brazil, clearly indicating that it is important to consider regional differences in biomass stocks for evaluating the role of this threatened tropical biome in the global carbon cycle. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The biogeochemical processes affecting the transport and cycling of terrestrial organic carbon in coastal and transition areas are still not fully understood One means of distinguishing between the sources of organic materials contributing to particulate organic matter (POM) in Babitonga Bay waters and sediments is by the direct measurement of delta(13)C of dissolved inorganic carbon (DIC) and delta(13)C and delta(15)N in the organic constituents. An isotopic survey was taken from samples collected in the Bay in late spring of 2004. The results indicate that the delta(13)C and delta(15)N compositions of OM varied from -21.7 parts per thousand to -26 2 parts per thousand. and from + 9 2 parts per thousand. to -0 1 parts per thousand, respectively. delta(13)C from DIC ranges from +0.04 parts per thousand to -12.7 parts per thousand The difference in the isotope compositions enables the determination of three distinct end-members terrestrial, marine and urban Moreover, the evaluation of source contribution to the particulate organic matter (POM) in the Bay, enables assessment of the anthropogenic impact. Comparing the depleted values of delta(13)C(DIC) and delta(13)C(POC) it is possible to further understand the carbon dynamic within Babitonga Bay (C) 2010 Elsevier BV All rights reserved