110 resultados para Expression Vector System


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of interaction between Mycobacterium leprae and neural cells has not been elucidated so far. No satisfactory interpretation exists as to the bacterium tropism to the peripheral nervous system in particular. The present study is a review of the micro-physiology of the extracellular apparatus attached to Schwann cells, as well as on the description of morphological units probably involved in the process of the binding to the bacterial wall.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The systemic renin-angiotensin system (RAS) promotes the plasmatic production of angiotensin (Ang) II, which acts through interaction with specific receptors. There is growing evidence that local systems in various tissues and organs are capable of generating angiotensins independently of circulating RAS. The aims of this study were to investigate the expression and localization of RAS components in rat gingival tissue and evaluate the in vitro production of Ang II and other peptides catalyzed by rat gingival tissue homogenates incubated with different Ang II precursors. Methods: Reverse transcription - polymerase chain reaction assessed mRNA expression. Immunohistochemical analysis aimed to detect and localize renin. A standardized fluorimetric method with tripeptide hippuryl-histidyl-leucine was used to measure tissue angiotensin-converting enzyme (ACE) activity, whereas high performance liquid chromatography showed products formed after the incubation of tissue homogenates with Ang I or tetradecapeptide renin substrate (TDP). Results: mRNA for renin, angiotensinogen, ACE, and Ang II receptors (AT(1a), AT(1b), and AT(2)) was detected in gingival tissue; cultured gingival fibroblasts expressed renin, angiotensinogen, and AT(1a) receptor. Renin was present in the vascular endothelium and was intensely expressed in the epithelial basal layer of periodontally affected gingival tissue. ACE activity was detected (4.95 +/- 0.89 nmol histidyl-leucine/g/minute). When Ang I was used as substrate, Ang 1-9 (0.576 +/- 0.128 nmol/mg/minute), Ang II (0.066 +/- 0.008 nmol/mg/minute), and Ang 1-7 (0.111 +/- 0.017 nmol/mg/minute) were formed, whereas these same peptides (0.139 +/- 0.031, 0.206 +/- 0.046, and 0.039 +/- 0.007 nmol/mg/minute, respectively) and Ang 1 (0.973 +/- 0.139 nmol/mg/minute) were formed when TDP was the substrate. Conclusion: Local RAS exists in rat gingival tissue and is capable of generating Ang II and other vasoactive peptides in vitro. J Periodontol 2009;80:130-139.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in gene expression have been measured 24 h after injury to mammalian spinal cords that can and cannot regenerate In opossums there is a critical period of development when regeneration stops being possible at 9 days postnatal cervical spinal cords regenerate, at 12 days they do not By the use of marsupial cDNA microarrays we detected 158 genes that respond differentially to injury at the two ages critical for regeneration For selected candidates additional measurements were made by real time PCR and sites of their expression were shown by immunostaining Candidate genes have been classified so as to select those that promote or prevent regeneration Up regulated by injury at 8 days and/or down regulated by injury at 13 days were genes known to promote growth, such as Mitogen activated protein kinase kinase 1 or transcripton factor TCF7L2 By contrast, at 13 days up regulation occurred of Inhibitory molecules including annexins ephrins and genes related to apoptosis and neurodegeneranve diseases Certain genes such as calmodulin 1 and NOGO changed expression similarly in animals that could and could not regenerate without any additional changes in response to injury These findings confirmed and extended changes of gene expression found in earlier screens on 9 and 12 day preparations without lesions and provide a comprehensive list of genes that serve as a basis for testing how identified molecules singly or in combination, promote and prevent central nervous system regeneration (C) 2010 Elsevier B V All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our aim was to investigate the effect of central NOS inhibition on hypothalamic arginine vasopressin (AVP) gene expression, hormone release and on the cardiovascular response during experimental sepsis. Male Wistar rats were intracerebroventricularly injected with the non-selective NO synthase (NOS) inhibitor (L-NAME) or aminoguanidine, a selective inhibitor of the inducible isoform (iNOS). After 30 min. sepsis was induced by cecal ligation and puncture (CLP) causing an increase in heart rate (HR), as well as a reduction in median arterial pressure (MAP) and AVP expression ratio (AVP(R)), mainly in the supraoptic nucleus. AVP plasma levels (AVP(P)) increased in the early but not in the late phase of sepsis. L-NAME pretreatment increased MAP but did not change HR. It also resulted in an increase in AVP(P) at all time points, except 24 h, when it returned to basal levels. AVP(R), however remained reduced in both nuclei. Aminoguanidine pretreatment resulted in increased MAP in the early phase and higher AVP(R) in the supraoptic, but not in the paraventricular nucleus, while AVP(P) remained elevated at all time points. We suggest that increased central NO production, mainly inducible NOS-derived, reduces AVP gene expression differentially in supraoptic and paraventricular nuclei, and that this may contribute to low AVP plasma levels and hypotension in the late phase of sepsis. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The continued increase in tuberculosis (TB) rates and the appearance of extremely resistant Mycobacterium tuberculosis strains (XDR-TB) worldwide are some of the great problems of public health. In this context, DNA immunotherapy has been proposed as an effective alternative that could circumvent the limitations of conventional drugs. Nonetheless, the molecular events underlying these therapeutic effects are poorly understood. Methods We characterized the transcriptional signature of lungs from mice infected with M. tuberculosis and treated with heat shock protein 65 as a genetic vaccine (DNAhsp65) combining microarray and real-time polymerase chain reaction analysis. The gene expression data were correlated with the histopathological analysis of lungs. Results The differential modulation of a high number of genes allowed us to distinguish DNAhsp65-treated from nontreated animals (saline and vector-injected mice). Functional analysis of this group of genes suggests that DNAhsp65 therapy could not only boost the T helper (Th)1 immune response, but also could inhibit Th2 cytokines and regulate the intensity of inflammation through fine tuning of gene expression of various genes, including those of interleukin-17, lymphotoxin A, tumour necrosis factor-cl, interleukin-6, transforming growth factor-beta, inducible nitric oxide synthase and Foxp3. In addition, a large number of genes and expressed sequence tags previously unrelated to DNA-therapy were identified. All these findings were well correlated with the histopathological lesions presented in the lungs. Conclusions The effects of DNA therapy are reflected in gene expression modulation; therefore, the genes identified as differentially expressed could be considered as transcriptional biomarkers of DNAhsp65 immunotherapy against TB. The data have important implications for achieving a better understanding of gene-based therapies. Copyright (C) 2008 John Wiley & Sons, Ltd.