141 resultados para ENERGY-GAIN
Resumo:
Pitzer`s equation for the excess Gibbs energy of aqueous solutions of low-molecular electrolytes is extended to aqueous solutions of polyelectrolytes. The model retains the original form of Pitzer`s model (combining a long-range term, based on the Debye-Huckel equation, with a short-range term similar to the virial equation where the second osmotic virial coefficient depends on the ionic strength). The extension consists of two parts: at first, it is assumed that a constant fraction of the monomer units of the polyelectrolyte is dissociated, i.e., that fraction does not depend on the concentration of the polyelectrolyte, and at second, a modified expression for the ionic strength (wherein each charged monomer group is taken into account individually) is introduced. This modification is to account for the presence of charged polyelectrolyte chains, which cannot be regarded as punctual charges. The resulting equation was used to correlate osmotic coefficient data of aqueous solutions of a single polyelectrolyte as well as of binary mixtures of a single polyelectrolyte and a salt with low-molecular weight. It was additionally applied to correlate liquid-liquid equilibrium data of some aqueous two-phase systems that might form when a polyelectrolyte and another hydrophilic but neutral polymer are simultaneously dissolved in water. A good agreement between the experimental data and the correlation result is observed for all investigated systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
An algorithm inspired on ant behavior is developed in order to find out the topology of an electric energy distribution network with minimum power loss. The algorithm performance is investigated in hypothetical and actual circuits. When applied in an actual distribution system of a region of the State of Sao Paulo (Brazil), the solution found by the algorithm presents loss lower than the topology built by the concessionary company.
Resumo:
In this study, we investigate the possibility of mode localization occurrence in a non-periodic Pfluger`s column model of a rocket with an intermediate concentrated mass at its middle point. We discuss the effects of varying the intermediate mass magnitude and its position and the resulting energy confinement for two cases. Free vibration analysis and the severity of mode localization are appraised, without decoupling the system, by considering as a solution basis the fundamental free response or dynamical solution. This allows for the reduction of the dimension of the algebraic modal equation that arises from satisfying the boundary and continuity conditions. By using the same methodology, we also consider the case of a cantilevered Pluger`s column with rotational stiffness at the middle support instead of an intermediate concentrated mass. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work analysed the influence of storage in the quality of forest biomass for energy generation in the region of Lages, Brazil. Logs of Pinus taeda L. and Eucalyptus dunnii Maiden were harvested and piled during the four different seasons: spring, summer, fall and winter. The analyses were performed immediately after harvesting (without being stored), after two, four and six months of storage. The evaluated properties were: moisture content, gross and net calorific value, ash content and solubility in cold water, hot water and sodium hydroxide. The species composition, storage span, harvesting season and storage season influenced the forest biomass characteristics. In general, eucalyptus presented better results than pine, losing moisture faster, having less alteration in the chemical composition and producing greater energetic gain over storage time. For both species, the ideal storage time was four months. Furthermore, spring and summer were the best harvesting seasons. Thus, if the forest biomass is harvested at the end of winter or beginning of spring with subsequent storage during the summer, this biomass will have the best performance for energy production. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Torrefaction is a mild pyrolysis process (usually up to 300 degrees C) that changes the chemical and physical properties of biomass. This process is a possible pre-treatment prior to further processes (transport, grinding, combustion, gasification, etc) to generate energy or biofuels. In this study, three eucalyptus wood species and bark were subjected to different torrefaction conditions to determine the alterations in their structural and energy properties. The most severe treatment (280 degrees C, 5 h) causes mass losses of more than 35%, with severe damage to anatomical structure, and an increase of about 27% in the specific energy content. Bark is more sensitive to heat than wood. Energy yields are always higher than mass yields, thereby demonstrating the benefits of torrefaction in concentrating biomass energy. The overall mass loss is proposed as a relevant parameter to synthesize the effect of torrefaction conditions (temperature and duration). Accordingly, all results are summarised by analytical expressions able to predict the energy properties as a function of the overall mass loss. These expressions are intended to be used in any optimization procedure, from production in the field to the final use. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Lysine is the reference essential amino acid in fish feeds and usually the most limiting amino acid in feedstuffs. The dietary lysine requirement of juvenile pacu Piaractus mesopotamicus (4.3 g) was determined using five isonitrogenous (32% CP) test diets containing graded levels of lysine (0.9, 1.17, 1.44, 1.69 and 1.96% of dry diet) fed three times a day to four groups of 18 fish for 74 days. Growth, body composition, nutrient retention and hematological parameters of pacu were analyzed. Analysis of variance showed that all growth performance parameters were significantly affected by dietary treatments. The lysine requirements estimated using regression analysis for maximum weight gain and feed efficiency were 1.45 and 1.51% of dry diet, respectively. Nitrogen retention efficiency increased with increasing levels of dietary lysine up to 1.43% (p<0.05). Whole-body protein increased (p<0.05) and whole-body lipid decreased (p<0.05) with increasing dietary lysine level. Thus, the lysine requirement of juvenile pacu was estimated as being 1.4-1.5% of dry diet or 4.4-4.7% of dietary protein. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The objectives were to evaluate preweaning performance, body composition, and efficiency of calves representing straightbred Nellore (NL), F(1), and 3-breed-cross systems. Energy requirements, milk production, and efficiency of 39 cow-calf pairs were recorded from straightbred NL calves from NL cows (10), crossbred (Angus-sired) calves from NL cows (ANL: 9), and crossbred calves (CC; Canchim-sired: 5/8 Charolais, 3/8 Zebu) from ANL (10) and Simmental x NL (10) cows. Cows and their respective calves were individually fed from birth to weaning (17 to 190 d postpartum). At 38 d of age, corn silage (7.8% CP, 2.19 Mcal of ME/kg of DM) was available to calves ad libitum. Milk production at 42, 98, 126, and 180 d postpartum was recorded by weighing calves before and after suckling. The ratio between GE and ME of milk was considered 1:0.93. Calves were slaughtered at weaning and the 9th-, 10th-, and 11th-rib section was removed for body composition estimation. The ANL calves were lighter (P < 0.01) at birth than the CC calves; the NL calves were intermediate. At weaning, the CC calves were heavier (P = 0.04) than the NL and ANL calves (230 +/- 5.5 vs. 172 +/- 8.1 and 209 +/- 8.6 kg, respectively). The ANL calves had greater (371 +/- 27 Mcal; P = 0.01) silage intake than the NL (270 +/- 25 Mcal) and CC (279 +/- 17 Mcal) calves. Milk energy intake was greater for the CC calves (970 +/- 38 Mcal of ME; P = 0.005) than the NL (670 +/- 57 Mcal of ME) and ANL (743 +/- 61 Mcal of ME) calves. The ANL calves compensated for the reduced milk production of the NL cows, which supplied less of their energy requirement for growth by increased silage intake. Calves from crossbred cows received a greater proportion of their total energy intake from milk. Crossbred calves had greater (P < 0.03) retained energy (retained energy = weaning body energy - birth body energy) than the NL calves (388 +/- 23 for ANL, and 438 +/- 15 for CC vs. 312 +/- 22 Mcal for NL calves). Percentages of water (P = 0.74) and chemical fat (P = 0.51) were similar among groups (63.7 +/- 0.6 and 14.3 +/- 0.7% for ANL calves, 63.1 +/- 0.4 and 14.7 +/- 0.5% for CC calves, and 63.3 +/- 0.6 and 13.7 +/- 0.7% of empty BW for water and chemical fat, respectively, for NL calves). Energetic efficiency (kcal of retained energy/Mcal of ME intake) was similar (P = 0.52) among groups (358 +/- 22 for ANL calves, 355 +/- 14 for CC calves, and 327 +/- 22 for NL calves). The greater BW gains and the differences in empty body composition at weaning were not enough to compensate for the greater ME intake of crossbreds. In this study, the crossbreeding systems evaluated increased preweaning calf performance but did not affect gross or energetic calf efficiency.
Resumo:
Objective: Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. Hematopoietic tissue requires a high nutrient supply, and a reduction in leukocytes, especially lymphocytes, suggests that some nutritional deficiencies might be altering bone marrow function and decreasing its ability to produce lymphocytes. In this study, we evaluated the effect that PEM has on lymphocyte subtypes and the cell cycle of CD5(+) cells. Methods: Swiss mice were subjected to PEM using a low-protein diet containing 4% protein. When the experimental group had lost about 20% of their original body weight, we collected blood and bone marrow cells and evaluated the hemogram, the myelogram, bone marrow lymphoid markers using flow cytometry, and the cell cycle in CD5(+) bone marrow. Results: Malnourished animals presented anemia, reticulocytopenia, and leukopenia with lymphopenia. The bone marrow was hypocellular, and flow cytometric analyses of bone marrow cells showed cells that were CD45(+) (91.2%), CD2(+) (84.9%), CD5(+) (37.3%), CD3(+) (23.5%), CD19(+) (43.3%), CD22(+) (34.7%), CD19(+)/CD2(+) (51.2%), CD19(+)/CD3(+)(24.0%), CD19(+)/CD5(+) (13.2%), CD22(+)/CD2(+) (40.1%), CD22(+)/CD3(+) (30.3%), and CD22(+)/CD5(+) (1.1%) in malnourished animals and CD45(+) (97.5%), CD2(+) (42.9%), CD5(+) (91.5%), CD3(+) (92.0%), CD19(+) (52.0%), CD22(+) (75.6%), CD19(+)/CD2(+) (62.0%), CD19(+)/CD3(+) (55.4%), CD19(+)/CO5(+) (6.7%), CD22(+)/CD2(+) (70.3%), CD22(+)/CD3(+) (55.9%), and CD22(+)/ CD5(+) (8.4%) in control animals. Malnourished animals also presented more CD5(+) cells in the G0 phase of cell cycle development. Conclusion: Malnourished animals presented bone marrow hypoplasia, maturation interruption, prominent lymphopenia with depletion in the lymphoid lineage, and changes in cellular development. We suggest that these changes are some of the primary causes of lymphopenia in cases of PEM and partly explain the increase in susceptibility to infections found in malnourished individuals. Published by Elsevier Inc.
Resumo:
Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. PEM decreases resistance to infection, impairing a number of physiological processes. In unstimulated cells, NF-kappa B is kept from binding to its consensus sequence by the inhibitor I kappa B alpha, which retains NF-kappa B in the cytoplasm. Upon various signals, such as lipopolysaccharide (LPS), I kappa B alpha is rapidly degraded and NF-kappa B is induced to translocate into the nucleus, where it activates expression of various genes that participate in the inflammatory response, including those involved in the synthesis of TNF-alpha. TRAF-6 is a cytoplasmic adapter protein that links the stimulatory signal from Toll like receptor-4 to NF-kappa B. The aim of this study was to evaluate the effect of malnutrition on induction of TNF-a by LPS in murine peritoneal macrophages. We evaluated peritoneal cellularity, the expression of MyD88, TRAF-6, IKK, I kappa B alpha and NF-kappa B, NF-kappa B activation and TNF-alpha mRNA and protein synthesis inmacrophages. Two-month-old male BALB/Cmice were submitted to PEM with a low-protein diet that contained 2% protein, compared to 12% protein in the control diet. When the experimental group had lost about 20% of the original body weight, it was used in the subsequent experiments. Malnourished animals presented anemia, leucopenia and severe reduction in peritoneal cavity cellularity. TNF-a mRNA and protein levels of macrophages stimulated with LPS were significantly lower in malnourished animals. PEM also decreased TRAF-6 expression and NF-kappa B activation after LPS stimulation. These results led us to conclude that PEM changes NF-kappa B signalling pathway in macrophages to LPS stimulus.
Resumo:
Malnutrition modifies resistance to infection by impairing a number of physiological processes including hematopoesis and the immune response. In this study, we examined the production of Interleukin-4 (IL-4) and IL-10 in response to lipopolysaccharide (LPS) and also evaluated the cellularity of the blood, bone marrow, and spleen in a mouse model of protein-energy malnutrition. Two-month-old male Swiss mice were subjected to protein-energy malnutrition (PEM) with a low-protein diet (4%) as compared to the control diet (20%). When the experimental group lost approximately 20% of their original body weight, the animals from both groups received 1.25 mu g of LPS intravenously. The Cells ill the blood, bone marrow, and spleen were counted, and circulating levels of IL-4 and IL-10 were evaluated in animals stimulated with LPS. Cells from the spleen, bone marrow, and peritoneal cavity of non-inoculated animals were collected for Culture to evaluate the production of IL-4 and IL-10 after stimulating these cells with 1.25 mu g of LPS in vitro. Malnourished animals presented leucopenia and a severe reduction in bone marrow, spleen, and peritoneal cavity cellularity before and after Stimulus with LPS. The circulating levels of IL-10 were increased in malnourished animals inoculated with LPS when compared to control animals, although the levels of IL-4 did not differ. In cells cultured with LPS, we observed high levels of IL-10 in the bone marrow cells of malnourished animals. These findings suggest that malnourished mice present a deficient immune response to LPS. These alterations may be partly responsible for the immunodeficiency observed in these malnourished mice.
Resumo:
In this preliminary study eighteen p-substituted benzoic acid [(5-nitro-thiophen-2-yl)-methylene]-hydrazides with antimicrobial activity were evaluated against multidrug-resistant Staphylococcus aureus, correlating the three-dimensional characteristics of the ligands with their respective bioactivities. The computer programs Sybyl and CORINA were used, respectively, for the design and three-dimensional conversion of the ligands. Molecular interaction fields were calculated using GRID program. Calculations using Volsurf resulted in a statistically consistent model with 48 structural descriptors showing that hydrophobicity is a fundamental property in the analyzed biological response.
Resumo:
In this work we review recent findings that explain how mitochondrial bioenergetic functions and redox state respond to a hyperlipidemic in vivo environment and may contribute to the maintenance of a normal metabolic phenotype. The experimental model utilized to evidence these adaptive mechanisms is especially useful for these studies since it exhibits genetic hypertriglyceridemia and avoids complications introduced by high fat diets. Liver from hypertrigliceridemic (HTG) mice have a greater content of glycerolipids together with increased mitochondrial free fatty acid oxidation. HTG liver mitochondria have a higher resting respiration rate but normal oxidative phosphorylation efficiency. This is achieved by higher activity of the mitochondrial potassium channel sensitive to ATP (mitoK(ATP)). The mild uncoupling mediated by mitoK(ATP) accelerates respiration rates and reduces reactive oxygen species generation. Although this response is not sufficient to inhibit lipid induced extra-mitochondrial oxidative stress in whole liver cells it avoids amplification of this redox imbalance. Furthermore, higher mitoK(ATP) activity increases liver, brain and whole body metabolic rates. These mitochondrial adaptations may explain why these HTG mice do not develop insulin resistance and obesity even under a severe hyperlipidemic state. On the contrary, when long term high fat diets are employed, insulin resistance, fatty liver and obesity develop and mitochondrial adaptations are inefficient to counteract energy and redox imbalances.
Resumo:
Sucrose-fed rats, a model of metabolic syndrome, are characterized by insulin resistance, obesity, hypertension, and high plasma levels of triacylglycerols and angiotensin II (Ang II). However, whether tissue renin-angiotensin system (RAS) is altered in metabolic syndrome is unclear. To study this issue, food ad libitum and water (C) or 20% sucrose solution (SC) were given to adult male Wistar rats, for 30 days. Body weight (BW), blood pressure (BP), epididymal adipose tissue (EPI) mass, rate of in vivo fatty acid (FA) synthesis in EPI, circulating glucose, insulin, leptin, angiotensins I and II, triacylglycerols, and plasma renin (PRA) and angiotensin-converting enzyme (ACE) activities were evaluated. In kidneys and EPI, gene and protein expression of type 1 (AT(1)) and 2 (AT(2)) Ang II receptors, ACE, angiotensinogen (ACT) as well as protein expression of angiotensin-converting enzyme 2 (ACE2) were determined. In both tissues, Ang I, Ang II and Ang-(1-7) contents were also measured by HPLC. In SC rats higher BP, EPI mass, circulating triacylglycerols, insulin, leptin, PRA and, Ang II were found. In EPI, the rate of in vivo FA synthesis was associated with increased Ang-(1-7), protein expression of AT(1) and AT(2) receptors, ACE2, ACT, and gene expression of ACT although a reduction in ACE activity and in adipose Ang I and Ang II contents was observed. In kidneys, AT(1) and AT(2), ACE and ACT gene and protein expression as well as protein expression of ACE2 were unaltered while Ang II, Ang-(1-7) and ACE activity increased. These RAS component changes seem to be tissue specific and possibly are related to enhancement of FA synthesis, EPI mass and hypertension. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This study aimed to compare the resting energy expenditure (REE) of white and non-white severely obese Brazilian women. REE was examined in 83 severely obese Brazilian women (n = 58 white and 25 non-white) with mean (+/- SD) age 42.99 +/- 11.35 and body mass index 46.88 +/- 6.22 kg/m(2) who were candidates for gastric bypass surgery. Body composition was assessed by air displacement plethysmography (ADP) BOD PODO body composition system (Life Measurement Instruments, Concord, CA) and REE was measured, under established protocol, with an open-circuit calorimeter (Deltatrac II MBM-200, Datex-Ohmeda, Madison, WI, USA). There was no significant difference between the REE of white and non-white severely obese women (1,953 +/- 273 and 1,906 +/- 271 kcal/d, respectively; p = 0.48). However, when adjusted for fat free mass (MLG), REE was significantly higher in non-white severely obese women (difference between groups of 158.4 kcal, p < 0.01). REE in white women was positively and significantly correlated to C-reactive protein (PCR) (r = 0.41.8; P < 0.001) and MLG (r = 0.771; P < 0.001). In the non-white women, REE was only significantly correlated to MLG (r = 0.753; P < 0.001). The multiple linear regression analysis showed that skin color, MLG and PCR were the significant determinants of REE (R(2) = 0.55). This study showed that, after adjustment for MLG, non-white severely obese women have a higher REE than the white ones. The association of body composition inflammation factors and REE in severely obese Brazilian women remains to be further investigated.
Resumo:
Calculating the estimated resting energy expenditure (REE) in severely obese patients is useful, but there is controversy concerning the effectiveness of available prediction equations (PE) using body weight (BW). We evaluated the efficacy of REE equations against indirect calorimetry (IC) in severely obese subjects and aimed to develop a new equation based on body composition compartments. One hundred and twenty severely obese patients had their REE measured (MREE) by IC and compared to the most commonly used PE (Harris-Benedict (HB), Ireton-Jones, Owen, and Mifflin St. Jeor). In a random sample (n = 60), a new REE equation based on fat-free mass (FFM) was developed and validated. All PE studied failed to estimate REE in severe obesity (low concordance correlation coefficient (CCC) and limits of agreement of nearly 50% of the sample +/- 10% of MREE). The HB equation using actual BW exhibited good results for all samples when compared to IC (2,117 +/- 518 kcal/day by HB vs. 2,139 +/- 423 kcal/day by MREE, P > 0.01); these results were blunted when patients were separated by gender (2,771 vs. 2,586 kcal/day, P < 0.001 in males and 1,825 vs. 1,939 kcal/day, P < 0.001 in females). A new resting energy expenditure equation prediction was developed using FFM, Horie-Waitzberg, & Gonzalez, expressed as 560.43 + (5.39 x BW) + (14.14 x FFM). The new resting energy expenditure equation prediction, which uses FFM and BW, demonstrates higher accuracy, precision, CCC, and limits of agreement than the standard PE in patients when compared to MREE (2,129 +/- 45 kcal/day vs. 2,139 +/- 423 kcal/day, respectively, P = 0.1). The new equation developed to estimate REE, which takes into account both FFM and BW, provides better results than currently available equations.