252 resultados para DISSIPATIVE RELATIVISTIC FLUIDS
Resumo:
Noise is an intrinsic feature of population dynamics and plays a crucial role in oscillations called phase-forgetting quasicycles by converting damped into sustained oscillations. This function of noise becomes evident when considering Langevin equations whose deterministic part yields only damped oscillations. We formulate here a consistent and systematic approach to population dynamics, leading to a Fokker-Planck equation and the associate Langevin equations in accordance with this conceptual framework, founded on stochastic lattice-gas models that describe spatially structured predator-prey systems. Langevin equations in the population densities and predator-prey pair density are derived in two stages. First, a birth-and-death stochastic process in the space of prey and predator numbers and predator-prey pair number is obtained by a contraction method that reduces the degrees of freedom. Second, a van Kampen expansion in the inverse of system size is then performed to get the Fokker-Planck equation. We also study the time correlation function, the asymptotic behavior of which is used to characterize the transition from the cyclic coexistence of species to the ordinary coexistence.
Resumo:
We present Monte Carlo simulations for a molecular motor system found in virtually all eukaryotic cells, the acto-myosin motor system, composed of a group of organic macromolecules. Cell motors were mapped to an Ising-like model, where the interaction field is transmitted through a tropomyosin polymer chain. The presence of Ca(2+) induces tropomyosin to block or unblock binding sites of the myosin motor leading to its activation or deactivation. We used the Metropolis algorithm to find the transient and the equilibrium states of the acto-myosin system composed of solvent, actin, tropomyosin, troponin, Ca(2+), and myosin-S1 at a given temperature, including the spatial configuration of tropomyosin on the actin filament surface. Our model describes the short- and long-range cooperativity during actin-myosin binding which emerges from the bending stiffness of the tropomyosin complex. We found all transition rates between the states only using the interaction energy of the constituents. The agreement between our model and experimental data also supports the recent theory of flexible tropomyosin.
Resumo:
It is shown that the deviations of the experimental statistics of six chaotic acoustic resonators from Wigner-Dyson random matrix theory predictions are explained by a recent model of random missing levels. In these resonatorsa made of aluminum plates a the larger deviations occur in the spectral rigidity (SRs) while the nearest-neighbor distributions (NNDs) are still close to the Wigner surmise. Good fits to the experimental NNDs and SRs are obtained by adjusting only one parameter, which is the fraction of remaining levels of the complete spectra. For two Sinai stadiums, one Sinai stadium without planar symmetry, two triangles, and a sixth of the three-leaf clover shapes, was found that 7%, 4%, 7%, and 2%, respectively, of eigenfrequencies were not detected.
Resumo:
A comprehensive survey of event-by-event fluctuations of charged hadron multiplicity in relativistic heavy ions is presented. The survey covers Au+Au collisions at
Resumo:
Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.
Resumo:
We study a stochastic lattice model describing the dynamics of coexistence of two interacting biological species. The model comprehends the local processes of birth, death, and diffusion of individuals of each species and is grounded on interaction of the predator-prey type. The species coexistence can be of two types: With self-sustained coupled time oscillations of population densities and without oscillations. We perform numerical simulations of the model on a square lattice and analyze the temporal behavior of each species by computing the time correlation functions as well as the spectral densities. This analysis provides an appropriate characterization of the different types of coexistence. It is also used to examine linked population cycles in nature and in experiment.
Resumo:
We have reconsidered the Bell-Lavis model of liquid water and investigated its relation to its isotropic version, the antiferromagnetic Blume-Emery-Griffiths model on the triangular lattice. Our study was carried out by means of an exact solution on the sequential Husimi cactus. We show that the ground states of both models share the same topology and that fluid phases (gas and low- and high-density liquids) can be mapped onto magnetic phases (paramagnetic, antiferromagnetic, and dense paramagnetic, respectively). Both models present liquid-liquid coexistence and several thermodynamic anomalies. This result suggests that anisotropy introduced through orientational variables play no specific role in producing the density anomaly, in agreement with a similar conclusion discussed previously following results for continuous soft core,models. We propose that the presence of liquid anomalies may be related to energetic frustration, a feature common to both models.
Resumo:
The existence of a special periodic window in the two-dimensional parameter space of an experimental Chua's circuit is reported. One of the main reasons that makes such a window special is that the observation of one implies that other similar periodic windows must exist for other parameter values. However, such a window has never been experimentally observed, since its size in parameter space decreases exponentially with the period of the periodic attractor. This property imposes clear limitations for its experimental detection.
Resumo:
We introduce a simple mean-field lattice model to describe the behavior of nematic elastomers. This model combines the Maier-Saupe-Zwanzig approach to liquid crystals and an extension to lattice systems of the Warner-Terentjev theory of elasticity, with the addition of quenched random fields. We use standard techniques of statistical mechanics to obtain analytic solutions for the full range of parameters. Among other results, we show the existence of a stress-strain coexistence curve below a freezing temperature, analogous to the P-V diagram of a simple fluid, with the disorder strength playing the role of temperature. Below a critical value of disorder, the tie lines in this diagram resemble the experimental stress-strain plateau and may be interpreted as signatures of the characteristic polydomain-monodomain transition. Also, in the monodomain case, we show that random fields may soften the first-order transition between nematic and isotropic phases, provided the samples are formed in the nematic state.
Resumo:
We revisit the scaling properties of a model for nonequilibrium wetting [Phys. Rev. Lett. 79, 2710 (1997)], correcting previous estimates of the critical exponents and providing a complete scaling scheme. Moreover, we investigate a special point in the phase diagram, where the model exhibits a roughening transition related to directed percolation. We argue that in the vicinity of this point evaporation from the middle of plateaus can be interpreted as an external field in the language of directed percolation. This analogy allows us to compute the crossover exponent and to predict the form of the phase transition line close to its terminal point.
Resumo:
Transverse momentum distributions and yields for pi(+/-), K(+/-), p, and (p) over bar in p + p collisions at root s = 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). These data provide important baseline spectra for comparisons with identified particle spectra in heavy ion collisions at RHIC. We present the inverse slope parameter T(inv), mean transverse momentum < p(T)>, and yield per unit rapidity dN/dy at each energy, and compare them to other measurements at different root s in p + p and p + (p) over bar collisions. We also present the scaling properties such as m(T) scaling and x(T) scaling on the p(T) spectra between different energies. To discuss the mechanism of the particle production in p + p collisions, the measured spectra are compared to next-to-leading-order or next-to-leading-logarithmic perturbative quantum chromodynamics calculations.
Resumo:
Using the Berezin-Marinov pseudoclassical formulation of the spin particle we propose a classical model of spin noncommutativity. In the nonrelativistic case, the Poisson brackets between the coordinates are proportional to the spin angular momentum. The quantization of the model leads to the noncommutativity with mixed spatial and spin degrees of freedom. A modified Pauli equation, describing a spin half particle in an external electromagnetic field is obtained. We show that nonlocality caused by the spin noncommutativity depends on the spin of the particle; for spin zero, nonlocality does not appear, for spin half, Delta x Delta y >= theta(2)/2, etc. In the relativistic case the noncommutative Dirac equation was derived. For that we introduce a new star product. The advantage of our model is that in spite of the presence of noncommutativity and nonlocality, it is Lorentz invariant. Also, in the quasiclassical approximation it gives noncommutativity with a nilpotent parameter.
Resumo:
The effects of fluctuating initial conditions are studied in the context of relativistic heavy ion collisions where a rapidly evolving system is formed. Two-particle correlation analysis is applied to events generated with the NEXSPHERIO hydrodynamic code, starting with fluctuating nonsmooth initial conditions (IC). The results show that the nonsmoothness in the IC survives the hydroevolution and can be seen as topological features of the angular correlation function of the particles emerging from the evolving system. A long range correlation is observed in the longitudinal direction and in the azimuthal direction a double peak structure is observed in the opposite direction to the trigger particle. This analysis provides clear evidence that these are signatures of the combined effect of tubular structures present in the IC and the proceeding collective dynamics of the hot and dense medium.
Resumo:
The study of spectral behavior of networks has gained enthusiasm over the last few years. In particular, random matrix theory (RMT) concepts have proven to be useful. In discussing transition from regular behavior to fully chaotic behavior it has been found that an extrapolation formula of the Brody type can be used. In the present paper we analyze the regular to chaotic behavior of small world (SW) networks using an extension of the Gaussian orthogonal ensemble. This RMT ensemble, coined the deformed Gaussian orthogonal ensemble (DGOE), supplies a natural foundation of the Brody formula. SW networks follow GOE statistics until a certain range of eigenvalue correlations depending upon the strength of random connections. We show that for these regimes of SW networks where spectral correlations do not follow GOE beyond a certain range, DGOE statistics models the correlations very well. The analysis performed in this paper proves the utility of the DGOE in network physics, as much as it has been useful in other physical systems.
Resumo:
The problem of spectra formation in hydrodynamic approach to A + A collisions is considered within the Boltzmann equations. It is shown analytically and illustrated by numerical calculations that the particle momentum spectra can be presented in the Cooper-R-ye form despite freeze-out is not sharp and has the finite temporal width. The latter is equal to the inverse of the particle collision rate at points (t(sigma) (r, p), r) of the maximal emission at a fixed momentum p. The set of these points forms the hypersurfaces t(sigma)(r,p) which strongly depend on the values of p and typically do not enclose completely the initially dense matter. This is an important difference from the standard Cooper-Frye prescription (CFp), with a common freeze-out hypersurface for all p, that affects significantly the predicted spectra. Also, the well known problem of CFp as for negative contributions to the spectra from non-space-like parts of the freeze-out hypersurface is naturally eliminated in this improved prescription.