150 resultados para Corridors (Ecology)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contrasting responses of Eucalyptus trees to K fertilizer applications have been reported on soils with low K contents. A complete randomized block experiment was set up in Brazil to test the hypothesis that large atmospheric deposits of NaCl in coastal regions might lead to a partial substitution of K by Na in Eucalyptus physiology and enhance tree growth. Treatments with application of 1.5, 3.0, 4.5 kmol K ha(-1) (K(1.5), K(3.0), 1(4.5, respectively) as KCl, 3.0 kmol K ha(-1) applied as K(2)SO(4), 3.0 kmol Na ha(-1) (Na(3.0)) as NaCl commercialized for cattle feeding, and a mixture of 1.5 kmol K + 1.5 kmol Na ha(-1) (K(1.5) + Na(1.5)) were compared to a control treatment (C) with no K and Na applications. All the plots were fertilized with large amounts of the other nutrients. A positive effect of NaCl applications on the growth of E. grandis trees was observed. NaCl and KCl additions in treatments Na(3.0) and K(3.0) increased above-ground biomass by 56% and 130% three years after planting, respectively, in comparison with the C treatment. By contrast, accumulated litterfall up to age 3 years was not significantly modified. NaCl applications in the Na(3.0) treatment significantly increased Na accumulation in above-ground tree components but did not modify K accumulation, whatever the sampling age. A partial substitution of K by Na in tree physiology, as observed for various agricultural crops, might explain this behaviour. Our results suggest the possibility of applying inexpensive K fertilizers, which are less purified in Na, and explain why high yields are achieved without K fertilizer applications in areas with large dry depositions of marine aerosols. Further investigations are necessary to identify the processes involving Na in Eucalyptus tree physiology. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Only 7% of the once extensive forest along the eastern coast of Brazil remains, and much of that is degraded and threatened by agricultural expansion and urbanization. We wondered if methods similar to those developed to establish fast-growing Eucalyptus plantations might also work to enhance survival and growth of rainforest species on degraded pastures composed of highly competitive C(4) grasses. An 8-factor experiment was laid out to contrast the value of different intensities of cultivation, application of fertilizer and weed control on the growth and survival of a mixture of 20 rainforest species planted at two densities: 3 m x 1 m, and 3 m x 2 m. Intensive management increased seedling survival from 90% to 98%, stemwood production and leaf area index (LAI) by similar to 4-fold, and stemwood production per unit of light absorbed by 30%. Annual growth in stem biomass was closely related to LAI alone (r(2) = 0.93, p < 0.0001), and the regression improved further in combination with canopy nitrogen content (r(2) =0.99, p < 0.0001). Intensive management resulted in a nearly closed forest canopy in less than 4 years, and offers a practical means to establish functional forests on abandoned agricultural land. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Capybaras were monitored weekly from 1998 to 2006 by counting individuals in three anthropogenic environments (mixed agricultural fields, forest and open areas) of southeastern Brazil in order to examine the possible influence of environmental variables (temperature, humidity, wind speed, precipitation and global radiation) on the detectability of this species. There was consistent seasonality in the number of capybaras in the study area, with a specific seasonal pattern in each area. Log-linear models were fitted to the sample counts of adult capybaras separately for each sampled area, with an allowance for monthly effects, time trends and the effects of environmental variables. Log-linear models containing effects for the months of the year and a quartic time trend were highly significant. The effects of environmental variables on sample counts were different in each type of environment. As environmental variables affect capybara detectability, they should be considered in future species survey/monitoring programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approval of the Clean Development Mechanism, provided for in the Kyoto Protocol, enables countries with afforested land to trade in carbon emissions reduction certificates related to carbon dioxide equivalent quantities (CO(2-e)) stored within a certain forest area. Potential CO(2-e) above base line sequestration was determined for two forest sites on commercial eucalyptus plantations in northern Brazil (Bahia). Compensation values for silvicultural regimes involving rotation lengths greater than economically optimal were computed using the Faustmann formula. Mean values obtained were US$8.16 (MgCO(2-e))(-1) and US $7.19 (MgCO(2-e))(-1) for average and high site indexes, respectively. Results show that carbon supply is more cost-efficient in highly productive sites. Annuities of US$18.8 Mg C(-1) and US$35.1 Mg C(-1) and yearly payments of US$4.4 m(-3) and US$8.2 m(-3) due for each marginal cubic meter produced were computed for high and average sites, respectively. The estimated value of the tonne of carbon defines minimum values to be paid to forest owners, in order to induce a change in silvicultural management regimes. A reduction of carbon supply could be expected as a result of an increase in wood prices, although it would not respond in a regular manner. For both sites, price elasticity of supply was found to be inelastic and increased as rotation length moved further away from economically optimal: 0.24 and 0.27 for age 11 years in average- and high-productivity sites, respectively. This would be due to biomass production potential as a limiting factor; beyond a certain threshold value. an increase in price does not sustain a proportional change in carbon storage supply. The environmental service valuation model proposed might be adequate for assessing potential supply in plantation forestry, from a private landowner perspective, with an economic opportunity cost. The model is not applicable to low commercial value forest plantations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Rondonia State, Brazil, settlement processes have cleared 68,000 km 2 of tropical forests since the 1970s. The intensity of deforestation has differed by region depending on driving factors like roads and economic activities. Different histories of land-use activities and rates of change have resulted in mosaics of forest patches embedded in an agricultural matrix. Yet, most assessments of deforestation and its effects on vegetation, soil and water typically focus on landscape patterns of current conditions, yet historical deforestation dynamics can influence current conditions strongly. Here, we develop and describe the use of four land-use dynamic indicators to capture historical land-use changes of catchments and to measure the rate of deforestation (annual deforestation rate), forest regeneration level (secondary forest mean proportion), time since disturbance (mean time since deforestation) and deforestation profile (deforestation profile curvature). We used the proposed indices to analyze a watershed located in central Rondonia. Landsat TM and ETM+ images were used to produce historical land-use maps of the last 18 years, each even year from 1984 to 2002 for 20 catchments. We found that the land-use dynamics indicators are able to distinguish catchments with different land-use change profiles. Four categories of historical land-use were identified: old and dominant pasture cover on small properties, recent deforestation and dominance of secondary growth, old extensive pastures and large forest remnants and, recent deforestation, pasture and large forest remnants. Knowing historical deforestation processes is important to develop appropriate conservation strategies and define priorities and actions for conserving forests currently under deforestation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic variation and environmental heterogeneity fundamentally shape the interactions between plants of the same species. According to the resource partitioning hypothesis, competition between neighbors intensifies as their similarity increases. Such competition may change in response to increasing supplies of limiting resources. We tested the resource partitioning hypothesis in stands of genetically identical (clone-origin) and genetically diverse (seed-origin) Eucalyptus trees with different water and nutrient supplies, using individual-based tree growth models. We found that genetic variation greatly reduced competitive interactions between neighboring trees, supporting the resource partitioning hypothesis. The importance of genetic variation for Eucalyptus growth patterns depended strongly on local stand structure and focal tree size. This suggests that spatial and temporal variation in the strength of species interactions leads to reversals in the growth rank of seed-origin and clone-origin trees. This study is one of the first to experimentally test the resource partitioning hypothesis for intergenotypic vs. intragenotypic interactions in trees. We provide evidence that variation at the level of genes, and not just species, is functionally important for driving individual and community-level processes in forested ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tropical forests are characterized by diverse assemblages of plant and animal species compared to temperate forests. Corollary to this general rule is that most tree species, whether valued for timber or not, occur at low densities (<1 adult tree ha(-1)) or may be locally rare. In the Brazilian Amazon, many of the most highly valued timber species occur at extremely low densities yet are intensively harvested with little regard for impacts on population structures and dynamics. These include big-leaf mahogany (Swietenia macrophylla), ipe (Tabebuia serratifolia and Tabebuia impetiginosa), jatoba (Hymenaea courbaril), and freijo cinza (Cordia goeldiana). Brazilian forest regulations prohibit harvests of species that meet the legal definition of rare - fewer than three trees per 100 ha - but treat all species populations exceeding this density threshold equally. In this paper we simulate logging impacts on a group of timber species occurring at low densities that are widely distributed across eastern and southern Amazonia, based on field data collected at four research sites since 1997, asking: under current Brazilian forest legislation, what are the prospects for second harvests on 30-year cutting cycles given observed population structures, growth, and mortality rates? Ecologically `rare` species constitute majorities in commercial species assemblages in all but one of the seven large-scale inventories we analyzed from sites spanning the Amazon (range 49-100% of total commercial species). Although densities of only six of 37 study species populations met the Brazilian legal definition of a rare species, timber stocks of five of the six timber species declined substantially at all sites between first and second harvests in simulations based on legally allowable harvest intensities. Reducing species-level harvest intensity by increasing minimum felling diameters or increasing seed tree retention levels improved prospects for second harvests of those populations with a relatively high proportion of submerchantable stems, but did not dramatically improve projections for populations with relatively flat diameter distributions. We argue that restrictions on logging very low-density timber tree populations, such as the current Brazilian standard, provide inadequate minimum protection for vulnerable species. Population declines, even if reduced-impact logging (RIL) is eventually adopted uniformly, can be anticipated for a large pool of high-value timber species unless harvest intensities are adapted to timber species population ecology, and silvicultural treatments are adopted to remedy poor natural stocking in logged stands. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth of Eucalyptus stands varies several fold across sites, under the influence of resource availability, stand age and stand structure. We describe a series of related studies that aim to understand the mechanisms that drive this great range in stand growth rates. In a seven-year study in Hawaii of Eucalyptus saligna at a site that was not water limited, we showed that nutrient availability differences led to a two-fold difference in stand wood production. Increasing nutrient supply in mid-rotation raised productivity to the level attained in continuously fertilised plots. Fertility affected the age-related decline in wood and foliage production; production in the intensive fertility treatments declined more slowly than in the minimal fertility treatments. The decline in stem production was driven largely by a decline in canopy photosynthesis. Over time, the fraction of canopy photosynthesis partitioned to below-ground allocation increased, as did foliar respiration, further reducing wood production. The reason for the decline in photosynthesis was uncertain, but it was not caused by nutrient limitation, a decline in leaf area or in photosynthetic capacity, or by hydraulic limitation. Most of the increase in carbon stored from conversion of the sugarcane plantation to Eucalyptus plantation was in the above-ground woody biomass. Soil carbon showed no net change. This study and other studies on carbon allocation showed that resource availability changes the fraction of annual photosynthesis used below-ground and for wood production. High resources (nutrition or water) decrease the partitioning below-ground and increase partitioning to wood production. Annual foliage and wood respiration and foliage production as a fraction of annual photosynthesis was remarkably constant across a wide range of fertility treatments and forest age. In the Brazil Eucalyptus Productivity Project, stand structure was manipulated by planting clonal Eucalyptus all at once or in three groups at three-monthly intervals, producing a stand where trees did not segregate into dominants and one that had strong dominance. The uneven stand structure reduced production 10-15% throughout the rotation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forest Stewardship Council (FSC) certification promises international consumers that `green-label` timber has been logged sustainably. However, recent research indicates that this is not true for ipe (Tabebuia spp.), currently flooding the US residential decking market, much of it logged in Brazil. Uneven or non-application of minimum technical standards for certification could undermine added value and eventually the certification process itself. We examine public summary reports by third-party certifiers describing the evaluation process for certified companies in the Brazilian Amazon to determine the extent to which standards are uniformly applied and the degree to which third-party certifier requirements for compliance are consistent among properties. Current best-practice harvest systems, combined with Brazilian legal norms for harvest levels, guarantee that no certified company or community complies with FSC criteria and indicators specifying species-level management. No guidelines indicate which criteria and indicators must be enforced, or to what degree, for certification to be conferred by third-party assessors; nor do objective guidelines exist for evaluating compliance for criteria and indicators for which adequate scientific information is not yet available to identify acceptable levels. Meanwhile, certified companies are expected to monitor the long-term impacts of logging on biodiversity in addition to conducting best-practice forest management. This burden should reside elsewhere. We recommend a clarification of `sustained timber yield` that reflects current state of knowledge and practice in Amazonia. Quantifiable verifiers for best-practice forest management must be developed and consistently employed. These will need to be flexible to reflect the diversity in forest structure and dynamics that prevails across this vast region. We offer suggestions for how to achieve these goals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis x urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (TBCA), bole growth, and net ecosystem production (NEP). Replicate plots within a single plantation were established at the midpoint of the rotation (end of year 3), with treatments of no additional fertilization or irrigation, heavy fertilization (to remove any nutrient limitation), irrigation (to remove any water limitation), and irrigation plus fertilization. Rainfall was unusually high in the first year (1769mm) of the experiment, and control plots had high rates of GPP (6.64 kg C m(-2) year(-1)), TBCA (2.14 kg C m(-2) year(-1)), and bole growth (1.81 kg C m(-2) year). Irrigation increased each of these rates by 15-17%. The second year of the experiment had average rainfall (1210 mm), and lower rainfall decreased production in control plots by 46% (GPP), 52% (TBCA), and 40% (bole growth). Fertilization treatments had neglible effects. The response to irrigation was much greater in the drier year, with irrigated plots exceeding the production in control plots by 83% (GPP), 239% (TBCA), and 24% (bole growth). Even though the rate of irrigation ensured no water limitation to tree growth, the high rainfall year showed higher production in irrigated plots for both GPP (38% greater than in drier year) and bole growth (23% greater). Varying humidity and supplies of water led to a range in NEP of 0.8-2.7 kg C m(-2) year. This difference between control and irrigated treatments, combined with differences between drier and wetter years, indicated a strong response of these Eucalyptus trees to both water supply and atmospheric humidity during the dry season. The efficiency of converting light energy into fixed carbon ranged from a low of 0.027 mol C to a high of 0.060 mol C per mol of absorbed photosynthetically active radiation (APAR), and the efficiency of bolewood production ranged from 0.78 to 1.98 g wood per MJ of APAR. Irrigation increased the efficiency of wood production per unit of water used from 2.55 kg wood m(-3) in the rainfed plot to 3.51 kg m(-3) in irrigated plots. Detailed information on the response of C budgets to environmental conditions and resource supplies will be necessary for accurate predictions of plantation yields across years and landscapes. (V) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sustainability of current harvest practices for high-value Meliaceae can be assessed by quantifying logging intensity and projecting growth and survival by post-logging populations over anticipated intervals between harvests. From 100%-area inventories of big-leaf mahogany (Swietenia macrophylla) covering 204 ha or more at eight logged and unlogged forest sites across southern Brazilian Amazonia, we report generally higher landscape-scale densities and smaller population-level mean diameters in eastern forests compared to western forests, where most commercial stocks survive. Density of trees >= 20 cm diameter varied by two orders of magnitude and peaked at 1.17 ha(-1). Size class frequency distributions appeared unimodal at two high-density sites, but were essentially arnodal or flat elsewhere; diameter increment patterns indicate that populations were multi- or all-aged. At two high-density sites, conventional logging removed 93-95% of commercial trees (>= 45 cm diameter at the time of logging), illegally eliminated 31-47% of sub-merchantable trees, and targeted trees as small as 20 cm diameter. Projected recovery by commercial stems during 30 years after conventional logging represented 9.9-37.5% of initial densities and was highly dependent on initial logging intensity and size class frequency distributions of commercial trees. We simulated post-logging recovery over the same period at all sites according to the 2003 regulatory framework for mahogany in Brazil, which raised the minimum diameter cutting limit to 60 cm and requires retention during the first harvest of 20% of commercial-sized trees. Recovery during 30 years ranged from approximately 0 to 31% over 20% retention densities at seven of eight sites. At only one site where sub-merchantable trees dominated the population did the simulated density of harvestable stems after 30 years exceed initial commercial densities. These results indicate that 80% harvest intensity will not be sustainable over multiple cutting cycles for most populations without silvicultural interventions ensuring establishment and long-term growth of artificial regeneration to augment depleted natural stocks, including repeated tending of outplanted seedlings. Without improved harvest protocols for mahogany in Brazil as explored in this paper, future commercial supplies of this species as well as other high-value tropical timbers are endangered. Rapid changes in the timber industry and land-use in the Amazon are also significant challenges to sustainable management of mahogany. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using data from a logging experiment in the eastern Brazilian Amazon region, we develop a matrix growth and yield model that captures the dynamic effects of harvest system choice on forest structure and composition. Multinomial logistic regression is used to estimate the growth transition parameters for a 10-year time step, while a Poisson regression model is used to estimate recruitment parameters. The model is designed to be easily integrated with an economic model of decisionmaking to perform tropical forest policy analysis. The model is used to compare the long-run structure and composition of a stand arising from the choice of implementing either conventional logging techniques or more carefully planned and executed reduced-impact logging (RIL) techniques, contrasted against a baseline projection of an unlogged forest. Results from log and leave scenarios show that a stand logged according to Brazilian management requirements will require well over 120 years to recover its initial commercial volume, regardless of logging technique employed. Implementing RIL, however, accelerates this recovery. Scenarios imposing a 40-year cutting cycle raise the possibility of sustainable harvest volumes, although at significantly lower levels than is implied by current regulations. Meeting current Brazilian forest policy goals may require an increase in the planned total area of permanent production forest or the widespread adoption of silvicultural practices that increase stand recovery and volume accumulation rates after RIL harvests. Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aceria guerreronis Keifer (Acari: Eriophyidae) is considered a major pest of coconut in many countries in the Americas, Africa and parts of Asia. Neoseiulus baraki Athias-Henriot (Acari: Phytoseiidae) is one of the predatory mites most commonly found in association with A. guerreronis in parts of northeast Brazil. The objective of this work was to study the distribution of A. guerreronis and N. baraki among and within coconut bunches. The hypothesis was tested that A. guerreronis and N. baraki are homogenously distributed over the fruits in a bunch, independent of the fruits` age and position. Five collections of bunches, each corresponding to leaves 12-16 from apex (about 2-6 month-old), were conducted in each of three fields in northeastern Brazil, from February to October, 2007. A total of 1,986 fruits were examined. The number of mites, the percentage of fruits hosting them and the level of damage caused by A. guerreronis were evaluated. The highest density of A. guerreronis was observed on fruits of bunch 4 whereas the highest density of N. baraki was observed on bunch 5. Considering all fruits together, no significant differences were observed between densities of either A. guerreronis or N. baraki among the basal, median and apical thirds of the bunches. In younger bunches, fruits of the apical region tend to have lower densities of both mites than fruits of the basal region. This pattern, in association with a similar pattern for the percentage of fruits hosting N. baraki, suggests that the predator initially reaches the basal bunch region, from where it moves to the apical region. The results of the present study suggest that the pest population reduction in bunches older than bunch 4 could be due to (1) an effect of the predator, (2) reduction of the proportion of undamaged tissues amenable to attack, and/or (3) less favorable characteristics of the fruits to attack by A. guerreronis, as indicated by their increasing lignin content as they get older.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predicting the potential geographical distribution of a species is particularly important for pests with strong invasive abilities. Tetranychus evansi Baker & Pritchard, possibly native to South America, is a spider mite pest of solanaceous crops. This mite is considered an invasive species in Africa and Europe. A CLIMEX model was developed to predict its global distribution. The model results fitted the known records of T. evansi except for some records in dry locations. Dryness as well as excess moisture stresses play important roles in limiting the spread of the mite in the tropics. In North America and Eurasia its potential distribution appears to be essentially limited by cold stress. Detailed potential distribution maps are provided for T. evansi in the Mediterranean Basin and in Japan. These two regions correspond to climatic borders for the species. Mite establishment in these areas can be explained by their relatively mild winters. The Mediterranean region is also the main area where tomato is grown in open fields in Europe and where the pest represents a threat. According to the model, the whole Mediterranean region has the potential to be extensively colonized by the mite. Wide expansion of the mite to new areas in Africa is also predicted. Agricultural issues highlighted by the modelled distribution of the pest are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spider mites Tetranychus urticae Koch and Tetranychus evansi Baker and Pritchard are important pests of horticultural crops. They are infected by entomopathogenic fungi naturally or experimentally. Fungal pathogens known to cause high infection in spider mite populations belong to the order Entomophthorales and include Neozygites spp. Studies are being carried out to develop some of these fungi as mycoacaricides, as standalone control measures in an inundative strategy to replace the synthetic acaricides currently in use or as a component of integrated mite management. Although emphasis has been put on inundative releases, entomopathogenic fungi can also be used in classical, conservation and augmentative biological control. Permanent establishment of an exotic agent in a new area of introduction may be possible in the case of spider mites. Conservation biological control can be achieved by identifying strategies to promote any natural enemies already present within crop ecosystems, based on a thorough understanding of their biology, ecology and behaviour. Further research should focus on development of efficient mass production systems, formulation, and delivery systems of fungal pathogens.