162 resultados para B cell biology
Resumo:
Structural vascular changes in two-kidney, one-clip (2K-1C) hypertension may result from increased matrix metalloproteinase (MMP)-2 activity. MMP-2 activation is regulated by other MMPs, including transmembrane-MMPs, and by tissue inhibitors of MMPs (TIMPs). We have investigated the localization of MMP-2, -9, -14, and TIMPs 1-4 in hypertensive aortas and measured their levels by zymography/Western blotting and immunohistochemistry. Gelatinolytic activity was assayed in tissues by in situ zymography. Sham-operated and 2K-1C hypertensive rats were treated with doxycycline (or vehicle) for 8 weeks, and the systolic blood pressure was monitored weekly. Doxycycline attenuated 2K-1C hypertension (165 +/- 11.7 mmHg versus 213 +/- 7.9 mm Hg in hypertensive controls, P<0.01), and completely prevented increase in the thicknesses of the media and the intima in 2K-1C animals (P<0.01). Increased amounts of MMP-2, -9, and -14 were found in hypertensive aortas, as well as enhanced gelatinolytic activity. A gradient in the localization of MMP-2, -9, and -14 was found, with increased amounts detected in the intima, at sites with higher gelatinolytic activity. Doxycycline attenuated hypertension induced increases in all the 3 investigated MMPs in both the media and the intima (all P<0.05). but it did not change the amounts of TIMPs 1-4 (P>0.05). Therefore, an imbalance between increased amounts of MMPs at the tissue level without a corresponding increase in the quantities of TIMPs, particularly in the intima and inner media layers, appears to account for the increased proteolytic activity found in 2K-1C hypertension-induced maladaptive vascular remodeling. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Despite wide clinical application, the efficacy of platelet-rich plasma (PRP) for repairing bone defects and enhancing osseointegration of metal implants is still subject of debate. This study aimed to evaluate the effects of a well-defined PRP-like mixture containing platelet-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin [growth factors (GFs) + proteins] on the development of the osteogenic phenotype on titanium (Ti) in vitro. Human alveolar bone-derived osteoblastic cells were subcultured on Ti discs and exposed during the first 7 days to osteogenic medium supplemented with GFs + proteins and to osteogenic medium alone thereafter up to 14 days. Control cultures were exposed to only osteogenic medium. Dose-response experiments were carried out using rat primary calvarial cells exposed to GFs + proteins and 1:10 or 1:100 dilutions of the mixture. Treated human-derived cell cultures exhibited a significantly higher number of cycling cells at days 1 and 4 and of total cells at days 4 and 7, significantly reduced alkaline phosphatase (ALP) activity at days 4, 7, and 10, and no Alizarin red-stained areas (calcium deposits) at day 14, indicating an impairment in osteoblast differentiation. Although the 1:10 and 1:100 dilutions of the mixture restored the proliferative activity of rat-derived osteogenic cells to control levels and promoted a significant increase in ALP activity at day 10 compared with GFs + proteins, mineralized nodule formation was only observed with the 1:100 dilution (similar to 50% of the control). These results showed that a PRP-like protein mixture inhibits development of the osteogenic phenotype in both human and rat osteoblastic cell cultures grown on Ti. (J Histochem Cytochem 57:265-276, 2009)
Resumo:
Strategies to promote bone repair have included exposure of cells to growth factor (GF) preparations from blood that generally include proteins as part of a complex mixture. This study aimed to evaluate the effects of such a mixture on different parameters of the development of the osteogenic phenotype in vitro. Osteoblastic cells were obtained by enzymatic digestion of human alveolar bone and cultured under standard osteogenic conditions until subconfluence. They were subcultured on Thermanox coverslips up to 14 days. Treated cultures were exposed during the first 7 days to osteogenic medium supplemented with a GFs + proteins mixture containing the major components found in platelet extracts [plate I et-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin] and to osteogenic medium alone thereafter. Control cultures were exposed only to the osteogenic medium. Treated cultures exhibited a significantly higher number of adherent cells from day 4 onward and of cycling cells at days 1 and 4, weak alkaline phosphatase (ALP) labeling, and significantly decreased levels of ALP activity and mRNA expression. At day 14, no Alizarin red-stained nodular areas were detected in cultures treated with GFs + proteins. Results were confirmed in the rat calvaria-derived osteogenic cell culture model. The addition of bone morphogenetic protein 7 or growth and differentiation factor 5 to treated cultures upregulated Runx2 and ALP mRNA expression, but surprisingly, ALP activity was not restored. These results showed that a mixture of GFs + proteins affects the development of the osteogenic phenotype both in human and rat cultures, leading to an increase in the number of cells, but expressed a less differentiated state.
Resumo:
This study reports the in vivo stimulatory effects of Cramoll 1,4 on rat spleen lymphocytes as evidenced by an increase in intracellular reactive oxygen species (ROS) production, Ca(2+) levels, and interleukin (IL)-1 beta expression. Cramoll 1,4 extracted from seeds of the Leguminosae Cratylia mollis Mart., is a lectin with antitumor and lymphocyte mitogenic activities. Animals (Nine-week-old male albino Wistar rats, Rattus norvegicus) were treated with intraperitoneal injection of Cramoll 1,4 (235 mu g ml(-1) single dose) and, 7 days later, spleen lymphocytes were isolated and analyzed for intracellular ROS, cytosolic Ca(2+), and IL-6, IL-10, and IL-1 mRNAs. Cell viability was investigated by annexin V-FITC and 7-amino-actinomycin D staining. The data showed that in lymphocytes activated by Cramoll 1,4 the increase in cytosolic and mitochondrial ROS was related to higher cytosolic Ca(2+) levels. Apoptosis and necrosis were not detected in statistically significant values and thus the lectin effector activities did not induce lymphocyte death. In vivo Cramoll 1,4 treatment led to a significant increase in IL-1 beta but IL-6 and -10 levels did not change. Cramoll 1,4 had modulator activities on spleen lymphocytes and stimulated the Th2 response.
Resumo:
In general, plant material grown in vitro has low photosynthetic ability to achieve positive carbon balances. Therefore, a continuous supply of carbohydrates from the culture medium is required, and sucrose has been the most commonly used carbon source. In this paper, we investigate the effects of different sucrose concentrations and the presence and absence of light on the endogenous levels of soluble carbohydrates and starch as well as on the proliferation and growth of Dendrobium Second Love (Orchidaceae) in vitro. The possibility of using etiolated stem segments as a means for micropropagating this hybrid was also verified. The results obtained indicated that the presence and absence of light and the sucrose concentrations used influenced the amounts of soluble carbohydrates and starch and the proliferation of D. Second Love shoots and roots. An increase in sucrose concentration caused a progressive increase in the amounts of total carbohydrates and starch. Under both light conditions, sucrose was the main sugar found in the shoots followed by glucose and fructose. The addition of sucrose to the culture medium up to 2% and 4% was advantageous to the number of shoots produced per explant and the root longitudinal growth in the presence and absence of light, respectively. Shoot and root dry matter and the number of roots formed per explant increased as sucrose concentration was raised up to 6% in both light treatments. The use of dark-grown shoot segments proved to be a useful and reliable alternative for the micropropagation of this hybrid.
Resumo:
Comparative analysis of zygotic and somatic embryogenesis of Acca sellowiana showed higher amounts of sucrose, fructose, raffinose, and myo-inositol in zygotic embryos at different developmental stages than in corresponding somatic ones. These differences were mostly constant. In general, glucose levels were significantly lower than the other soluble carbohydrates analyzed, showing minor variation in each embryo stage. Despite the presence of sucrose in the culture medium, its levels conspicuously diminished in somatic embryos compared with the zygotic ones. Raffinose enhanced parallel to embryo development, regardless of its zygotic or somatic origin. Analysis of the soluble carbohydrate composition of mature zygotic cotyledon used as explant pointed out fructose, glucose, myo-inositol, sucrose, and raffinose as the most important. Similar composition was also found in the corresponding somatic cotyledon. Total soluble carbohydrates varied inversely, decreasing in zygotic embryos and increasing in somatic embryos until the 24th d, at which time they increased rapidly about sixfold in zygotic embryos until the 27th d, a period coinciding with the zygotic proembryos formation. Such condition seems to reflect directly the variation of endogenous sucrose level, mainly because glucose and fructose diminished continuously during this time period. This means that, in terms of soluble sugars, zygotic embryo formation occurred under a situation represented by high sucrose amounts, simultaneously with low fructose and glucose levels, while in contrast, somatic embryo formation took place under an endogenous sugar status characterized by a substantial fructose enhancement. Starch levels increased continuously in zygotic embryos and decreased in somatic ones, the reverse to what was found in fructose variation. Starch accumulation was significantly higher in somatic torpedo and cotyledonary embryos than in the corresponding zygotic ones.
Resumo:
The gills contain essential cells for respiration and osmoregulation, whereas the hepatopancreas is the site of digestion, absorption, and nutrients storage. The aim of this work was to separate and characterize gill and hepatopancreatic cells of the mangrove crab, Ucides cordatus. For gills, the methodology consisted of an enzymatic cellular dissociation using Trypsin at 0.5%, observation of cellular viability with Tripan Blue, and separation of cells using discontinuous sucrose gradient at concentrations of 10%, 20%, 30%, and 40%. The hepatopancreatic cells were dissociated by magnetic stirring, with posterior separation by sucrose gradient at the same concentrations above. For gills, a high cellular viability was observed (92.5 +/- 2.1%), with hemocyte cells in 10% sucrose layer (57.99 +/- 0.17%, *P < 0.05), principal cells in the 20% sucrose layer (57.33 +/- 0.18, *P < 0.05), and thick cells and pillar cells in the 30% and 40% sucrose layers, respectively (39.54 +/- 0.05%, *P < 0.05; and 41.81 +/- 0.04%, *P < 0.05). The hepatopancreatic cells also showed good viability (79.22 +/- 0.02%), with the observation of embryonic (E) cells in the 10% sucrose layer (67.87 +/- 0.06%, **P < 0.001), resorptive (R) and fibrillar (F) cells in the 20% and 30% sucrose layers (44.71 +/- 0.06%, **P < 0.001, and 43.25 +/- 0.01%, *P < 0.05; respectively), and blister (B) cells in the 40% sucrose layer (63.09 +/- 0.03%, **P < 0.001). The results are a starting point for in vitro studies of heavy metal transport in isolated cells of the mangrove crab U. cordatus, subjected to contamination by metals in the mangrove habitat where they are found.
Resumo:
The cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle-like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake by P. falciparum-infected erythrocytes shows that at R and S stages, a time-increase acquisition of the porphyrin reaches the maximum fluorescence distribution after 60 min; in contrast, at the T stage, the maximum occurs after 120 min of ZnPPIX uptake. The difference in time-increase acquisition of the porphyrin is in agreement with a maximum activity of haem uptake at the T stage. To gain insights into haem metabolism, recombinant PfHO (P. falciparum haem oxygenase) was expressed, and the conversion of haem into BV (biliverdin) was detected. These findings point out that, in addition to haemozoin formation, the malaria parasite P. falciparum has evolved two distinct mechanisms for dealing with haem toxicity, namely, the uptake of haem into a cellular compartment where haemozoin is formed and HO activity. However, the low Plasmodium HO activity detected reveals that the enzyme appears to be a very inefficient way to scavenge the haem compared with the Plasmodium ability to uptake the haem analogue ZnPPIX and delivering it to the food vacuole.
Resumo:
A bill allowing researches with human embryonic stem cells has been approved by the Brazilian Congress, originally in 2005 and definitively by the Supreme Court in 2008. However, several years before, investigations in Brazil with adult stem cells in vitro in animal models as well as clinical trials, were started and are currently underway. Here, we will summarize the main findings and the challenges of going from bench to bed, focusing on heart, diabetes, cancer, craniofacial, and neuromuscular disorders. We also call attention to the importance of publishing negative results on experimental trials in scientific journals and websites. They are of great value to investigators in the field and may avoid the repeating of unsuccessful experiments. In addition, they could be referred to patients seeking information, aiming to protect them against financial and psychological harm.
Resumo:
Nonsyndromic cleft lip and palate (NSCL/P) is a complex disease resulting from failure of fusion of facial primordia, a complex developmental process that includes the epithelial-mesenchymal transition (EMT). Detection of differential gene transcription between NSCL/P patients and control individuals offers an interesting alternative for investigating pathways involved in disease manifestation. Here we compared the transcriptome of 6 dental pulp stem cell (DPSC) cultures from NSCL/P patients and 6 controls. Eighty-seven differentially expressed genes (DEGs) were identified. The most significant putative gene network comprised 13 out of 87 DEGs of which 8 encode extracellular proteins: ACAN, COL4A1, COL4A2, GDF15, IGF2, MMP1, MMP3 and PDGFa. Through clustering analyses we also observed that MMP3, ACAN, COL4A1 and COL4A2 exhibit co-regulated expression. Interestingly, it is known that MMP3 cleavages a wide range of extracellular proteins, including the collagens IV, V, IX, X, proteoglycans, fibronectin and laminin. It is also capable of activating other MMPs. Moreover, MMP3 had previously been associated with NSCL/P. The same general pattern was observed in a further sample, confirming involvement of synchronized gene expression patterns which differed between NSCL/P patients and controls. These results show the robustness of our methodology for the detection of differentially expressed genes using the RankProd method. In conclusion, DPSCs from NSCL/P patients exhibit gene expression signatures involving genes associated with mechanisms of extracellular matrix modeling and palate EMT processes which differ from those observed in controls. This comparative approach should lead to a more rapid identification of gene networks predisposing to this complex malformation syndrome than conventional gene mapping technologies.
Resumo:
Mesenchymal stem cells (MSC) are multipotent cells which can be obtained from several adult and fetal tissues including human umbilical cord units. We have recently shown that umbilical cord tissue (UC) is richer in MSC than umbilical cord blood (UCB) but their origin and characteristics in blood as compared to the cord remains unknown. Here we compared, for the first time, the exonic protein-coding and intronic noncoding RNA (ncRNA) expression profiles of MSC from match-paired UC and UCB samples, harvested from the same donors, processed simultaneously and under the same culture conditions. The patterns of intronic ncRNA expression in MSC from UC and UCB paired units were highly similar, indicative of their common donor origin. The respective exonic protein-coding transcript expression profiles, however, were significantly different. Hierarchical clustering based on protein-coding expression similarities grouped MSC according to their tissue location rather than original donor. Genes related to systems development, osteogenesis and immune system were expressed at higher levels in UCB, whereas genes related to cell adhesion, morphogenesis, secretion, angiogenesis and neurogenesis were more expressed in UC cells. These molecular differences verified in tissue-specific MSC gene expression may reflect functional activities influenced by distinct niches and should be considered when developing clinical protocols involving MSC from different sources. In addition, these findings reinforce our previous suggestion on the importance of banking the whole umbilical cord unit for research or future therapeutic use.
Resumo:
The definition of the nerve cell types of the myenteric plexus of the mouse small intestine has become important, as more researchers turn to the use of mice with genetic mutations to analyze roles of specific genes and their products in enteric nervous system function and to investigate animal models of disease. We have used a suite of antibodies to define neurons by their shapes, sizes, and neurochemistry in the myenteric plexus. Anti-Hu antibodies were used to reveal all nerve cells, and the major subpopulations were defined in relation to the Hu-positive neurons. Morphological Type II neurons, revealed by anti-neurofilament and anti-calcitonin gene-related peptide antibodies, represented 26% of neurons. The axons of the Type II neurons projected through the circular muscle and submucosa to the mucosa. The cell bodies were immunoreactive for choline acetyltransferase (ChAT), and their terminals were immunoreactive for vesicular acetylcholine transporter (VAChT). Nitric oxide synthase (NOS) occurred in 29% of nerve cells. Most were also immunoreactive for vasoactive intestinal peptide, but they were not tachykinin (TK)-immunoreactive, and only 10% were ChAT-immunoreactive. Numerous NOS terminals occurred in the circular muscle. We deduced that 90% of NOS neurons were inhibitory motor neurons to the muscle (26% of all neurons) and 10% (3% of all neurons) were interneurons. Calretinin immunoreactivity was found in a high proportion of neurons (52%). Many of these had TK immunoreactivity. Small calretinin neurons were identified as excitatory neurons to the longitudinal muscle (about 20% of neurons, with ChAT/calretinin/+/- TK chemical coding). Excitatory neurons to the circular muscle (about 10% of neurons) had the same coding. Calretinin immunoreactivity also occurred in a proportion of Type II neurons. Thus, over 90% of neurons in the myenteric plexus of the mouse small intestine can be currently identified by their neurochemistry and shape.
Resumo:
The present study describes the enzymatic properties and molecular identification of 5`-nucleotidase in soluble and microsomal fractions from rat cardiac ventricles. Using AMP as a substrate, the results showed that the cation and the concentration required for maximal activity in the two fractions was magnesium at a final concentration of 1 mM. The pH optimum for both fractions was 9.5. The apparent K-m (Michaelis constant) values calculated from the Eadie-Hofstee plot were 59.7 +/- 10.4 mu M and 134.8 +/- 32.1 mu M, with V-max values of 6.7 +/- 0.4 and 143.8 +/- 23.8 nmol P-i/min/mg of protein (means +/- S.D., n = 4) from soluble and microsomal fractions respectively. Western blotting analysis of ecto-5`-nucleotidase revealed a 70 kDa protein in both fractions, with the major proportion present in the microsomal fraction. The presence of these enzymes in the heart probably has a physiological function in adenosine signalling. Furthermore, the presence of ecto-5`-nucleotidase in the microsomal fraction could have a role in the modulation of the excitation-contraction-coupling process through involvement of the Ca2+ influx into the sarcoplasmic reticulum. The measurement of maximal enzyme activities in the two fractions highlights the potential capacity of the different pathways of purine metabolism in the heart.
Resumo:
Short chain fatty acids (SCFAs) are metabolic by products of anerobic bacteria fermentation. These fatty acids, despite being an important fuel for colonocytes, are also modulators of leukocyte function. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate, and butyrate) on function of neutrophils, and the possible mechanisms involved. Neutrophils obtained from rats by intraperitoneal lavage 4 h after injection of oyster glycogen solution (1%) were treated with non toxic concentrations of the fatty acids. After that, the following measurements were performed: phagocytosis and destruction of Candida albicans, production of ROS (O(2)(center dot-), H(2)O(2), and HOCl) and degranulation. Gene expression (p47(phox) and p22(phox)) and protein phosphorylation (p47(phox)) were analyzed by real time reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. Butyrate inhibited phagocytosis and killing of C. albicans. This SCFA also had an inhibitory effect on production of O(2)(center dot-), H(2)O(2), and HOCI by neutrophils stimulated with PMA or fMLP. This effect of butyrate was not caused by modulation of expression of NADPH oxidase subunits (p47(phox) and p22(phox)) but it was in part due to reduced levels of p47(phox) phosphorylation and an increase in the concentration of cyclic AMP. Acetate increased the production of O(2)(center dot-) and H(2)O(2), in the absence of stimuli but had no effect on phagocytosis and killing of C. albicans. Propionate had no effect on the parameters studied. These results suggest that butyrate can modulate neutrophil function, and thus could be important in inflammatory neutrophil-associated diseases. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Dietary soy lecithin supplementation decreases hyperlipidemia and influences lipid metabolism. Although this product is used by diabetic patients, there are no data about the effect of soy lecithin supplementation on the immune system. The addition of phosphatidylcholine, the main component of lecithin, to a culture of lymphocytes has been reported to alter their function. If phosphatidylcholine changes lymphocyte functions in vitro as previously shown, then it could also affect immune cells in vivo. In the present study, the effect of dietary soy lecithin oil macrophage phagocytic capacity and on lymphocyte number in response to concanavalin A (ConA) stimulation was investigated in non-diabetic and alloxan-induced diabetic rats. Supplementation was carried Out daily with 2 g kg(-1) b.w. lecithin during 7 days. After that, blood was drawn from fasting rats and peritoneal macrophages and mesenteric lymph node lymphocytes were collected to determine the phospholipid content. Plasma triacylglycerol (TAG), total and HDL cholesterol and glucose levels were also determined. Lymphocytes were stimulated by Conk The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye reduction method and flow cytometry were employed to evaluate lymphocyte metabolism and cell number, respectively. Soy lecithin supplementation significantly increased both macrophage phagocytic capacity (+29%) in non-diabetic rats and the lymphocyte number in diabetic rats (+92%). It is unlikely that plasma lipid levels indirectly affect immune cells, since plasma cholesterol, TAG, or phospholipid content was not modified by lecithin supplementation. In Conclusion, lymphocyte and macrophage function were altered by lecithin supplementation, indicating ail immunomodulatory effect of phosphatidylcholine. Copyright (C) 2008 John Wiley & Sons, Ltd.