189 resultados para 2D SixGe1-x alloys
Resumo:
We present parameter-free calculations of electronic properties of InGaN, InAlN, and AlGaN alloys. The calculations are based on a generalized quasichemical approach, to account for disorder and composition effects, and first-principles calculations within the density functional theory with the LDA-1/2 approach, to accurately determine the band gaps. We provide precise results for AlGaN, InGaN, and AlInN band gaps for the entire range of compositions, and their respective bowing parameters. (C) 2011 American Institute of Physics. [doi:10.1063/1.3576570]
Resumo:
We report the discovery with XMM-Newton of a hard-thermal (T similar to 130 MK) and variable X-ray emission from the Be star HD 157832, a new member of the puzzling class of gamma-Cas-like Be/X-ray systems. Recent optical spectroscopy reveals the presence of a large/dense circumstellar disk seen at intermediate/high inclination. With a B1.5V spectral type, HD 157832 is the coolest gamma-Cas analog known. In addition, its non-detection in the ROSAT all-sky survey shows that its average soft X-ray luminosity varied by a factor larger than similar to 3 over a time interval of 14 yr. These two remarkable features, ""low"" effective temperature, and likely high X-ray variability turn HD 157832 into a promising object for understanding the origin of the unusually high-temperature X-ray emission in these systems.
Resumo:
This paper concerns the spaces of compact operators kappa(E,F), where E and F are Banach spaces C([1, xi], X) of all continuous X-valued functions defined on the interval of ordinals [1, xi] and equipped with the supremun norm. We provide sufficient conditions on X, Y, alpha, beta, xi and eta, with omega <= alpha <= beta < omega 1 for the following equivalence: (a) kappa(C([1, xi], X), C([1, alpha], Y)) is isomorphic to kappa(C([1,eta], X), C([1, beta], Y)), (b) beta < alpha(omega). In this way, we unify and extend results due to Bessaga and Pelczynski (1960) and C. Samuel (2009). Our result covers the case of the classical spaces X = l(p) and Y = l(q) with 1 < p, q < infinity.
Resumo:
Tibolone is used for hormone reposition of postmenopause women and isotibolone is considered the major degradation product of tibolone. Isotibolone can also be present in tibolone API raw materials due to some inadequate synthesis. Its presence is then necessary to be identified and quantified in the quality control of both API and drug products. In this work we present the indexing of an isotibolone X-ray diffraction pattern measured with synchrotron light (lambda=1.2407 angstrom) in the transmission mode. The characterization of the isotibolone sample by IR spectroscopy, elemental analysis, and thermal analysis are also presented. The isotibolone crystallographic data are a=6.8066 angstrom, b=20.7350 angstrom, c=6.4489 angstrom, beta=76.428 degrees, V=884.75 angstrom(3), and space group P2(1), rho(o)= 1.187 g cm(-3), Z=2. (C) 2009 International Centre for Diffraction Data. [DOI: 10.1154/1.3257612]
Resumo:
This paper describes the preparation of a Pt-Rh alloy surface electrodeposited on Pt electrodes and its electrocatalytic characterization for methanol oxidation. The X-ray photoelectronic spectroscopy ( XPS) results demonstrate that the surface composition is approximately 24 at-% Rh and 76 % Pt. The cyclic voltammetry (CV) and electrochemical quartz crystal (EQCN) results for the alloy were associated, for platinum, to the well known profile in acidic medium. For Rh, on the alloy, the generation of rhodium hydroxide species (Rh(OH)(3) and RhO(OH)(3)) was measured. During the successive oxidation-reduction cycles the mass returns to its original value, indicating the reversibility of the processes. It was not observed rhodium dissolution during the cycling. The 76/24 at % Pt-Rh alloy presented singular electrocatalytic activity for methanol electrooxidation, which started at more negative potentials compared to pure Pt (70 mV). During the sweep towards more negative potentials, there is only weak CO re-adsorption on both Rh and Pt-Rh alloy surfaces, which can be explained by considering the interaction energy between Rh and CO.
Resumo:
Recent fears of terrorism have provoked an increase in delays and denials of transboundary shipments of radioisotopes. This represents a serious constraint to sterile insect technique (SIT) programs around the world as they rely on the use of ionizing radiation from radioisotopes for insect sterilization. To validate a novel X ray irradiator, a series of studies on Ceratitis capitata (Wiedemann) and Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) were carried out, comparing the relative biological effectiveness (RBE) between X rays and traditional gamma radiation from (60)Co. Male C. capitata pupae and pupae of both sexes of A. fraterculus, both 24 - 48 h before adult emergence, were irradiated with doses ranging from 15 to 120 Gy and 10-70 Gy, respectively. Estimated mean doses of 91.2 Gy of X and 124.9 Gy of gamma radiation induced 99% sterility in C. capitata males, Irradiated A. fraterculus were 99% sterile at approximate to 40-60 Gy for both radiation treatments. Standard quality control parameters and mating indices were not significantly affected by the two types of radiation. The RBE did not differ significantly between the tested X and gamma radiation, and X rays are as biologically effective for SIT purposes as gamma rays are. This work confirms the suitability of this new generation of X ray irradiators for pest control programs that integrate the SIT.
Resumo:
A method for simultaneous determination of Cr, Fe, Co, Ni, Cu, Zn, As e Pb in liquid chemical waste using Energy Dispersive X-Ray Fluorescence (EDXRF) technique was evaluated. A small sample amount (200 mu L) was dried on a 6.35 mu m thickness Mylar film at 60 degrees C and the analyses were carried out using an EDXRF spectrometer operated with an X-ray Mo tube (Zr filter) at 30 kV/20 mA. The acquisition time was 300 s and the Ga element was utilized as internal standard at 25 mg/L for quantitative analysis. The method trueness was assessed by spiking and the detection limit for those elements ranged from 0.39 to 1.7 mg/L. This method is notable because it assists the choice of the more appropriated waste treatment procedure, in which inter elemental interference is a matter of importance. In addition, this inexpensive method allows a non-destructive determination of the elements from (19)K to (92)U simultaneously.
Resumo:
In this work, quaternary conformational studies of peanut agglutinin (PNA) have been carried out using small-angle X-ray scattering (SAXS). PNA was submitted to three different conditions: pH variation (2.5, 4.0, 7.4 and 9.0), guanidine hydrochloride presence (0.5-2 M) at each pH value, and temperature ranging from 25 to 60 degrees C. All experiments were performed in the absence and presence of T-antigen to evaluate its influence on the lectin stability. At room temperature and pH 4.0,7.4 and 9.0, the SAXS curves are consistent with the PNA scattering in its crystallographic native homotetrameric structure, with monomers in a jelly roll fold, associated by non-covalent bonds resulting in an open structure. At pH 2.5, the results indicate that PNA tends to dissociate into smaller sub-units, as dimers and monomers, followed by a self-assembling into larger aggregates. Furthermore, the conformational stability under thermal denaturation follows the pH sequence 7.4 > 9.0 > 4.0 > 2.5. Such results are consistent with the conformational behavior found upon GndHCl influence. The presence of T-antigen does not affect the protein quaternary structure in all studied systems within the SAXS resolution. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The study of deformation properties of low carbon steels is of particular interest because of their many technological applications. Obtaining fine grained Fe based materials can be approached by one of the several available Severe Plastic Deformation (SPD) techniques. The current paper shows experimental data and simulations of the deformation process of iron samples by Equal Channel Angular Extrusion (ECAE). The samples were extruded in a 120 degrees channel die either by one or a few passes. The heterogeneity and local development of the deformation on the elbow of the channel has been studied by X-ray measuring and simulation of the texture evolution. The Self Consistent models used for simulation allowed the calculation of the spin of the main texture components which agreed pretty well with the experiments.
Resumo:
CoB, CO(2)B, CoSi, Co(2)Si and CO(5)Si(2)B phases can be formed during heat-treatment of amorphous co-Si-B soft magnetic materials. Thus, it is important to determine their magnetic behavior as a function of applied field and temperature. In this study, polycrystalline single-phase samples of the above phases were produced via arc melting and heat-treatment under argon. The single-phase nature of the samples was confirmed via X-ray diffraction experiments. AC and DC magnetization measurements showed that Co(2)Si and CO(5)Si(2)B phases are paramagnetic. Minor amounts of either Co(2)Si or CoSi(2) in the CoSi-phase sample suggested a paramagnetic behavior of the CoSi-phase, however, it should be diamagnetic as shown in the literature. The diamagnetic behavior of the CoB phase was also confirmed. The paramagnetic behavior of CO(5)Si(2)B is for the first time reported. The magnetization results of the phase CO(2)B have a ferromagnetic signature already verified on previous NMR studies. A detailed set of magnetization measurements of this phase showed a change of the easy magnetization axis starting at 70K, with a temperature interval of about 13K at a very small field of 1 mT. As the strength of the field is increased the temperature interval is enlarged. The strength of field at which the magnetization saturates increases almost linearly as the temperature is increased above 70K. The room temperature total magnetostriction of the CO(2)B phase was determined to be 8 ppm at a field of 1T. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The development of Nb(3)Al and Nb(3)Sn superconductors is of great interest for the applied superconductivity area. These intermetallics composites are obtained normally by heat treatment reactions at high temperature. Processes that allow formation of the superconducting phases at lower temperatures (<1000 degrees C), particularly for Nb(3)Al, are of great interest. The present work studies phase formation and stability of Nb(3)Al and Nb(3)Sn superconducting phases using mechanical alloying (high energy ball milling). Our main objective was to form composites near stoichiometry, which could be transformed into the superconducting phases using low-temperature heat treatments. High purity Nb-Sn and Nb-Al powders were mixed to generate the required superconducting phases (Nb-25at.%Sn and Nb-25at.%Al) in an argon atmosphere glove-box. After milling in a Fritsch mill, the samples were compressed in a hydraulic uniaxial press and encapsulated in evacuated quartz tubes for heat treatment. The compressed and heat treated samples were characterized using X-ray diffractometry. Microstructure and chemical analysis were accomplished using scanning electron microscopy and energy dispersive spectrometry. Nb(3)Al XRD peaks were observed after the sintering at 800 degrees C for the sample milled for 30 h. Nb(3)Sn XRD peaks could be observed even before the heat treatment. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A combination of an extension of the topological instability ""lambda criterion"" and a thermodynamic criterion were applied to the Al-La system, indicating the best range of compositions for glass formation. Alloy compositions in this range were prepared by melt-spinning and casting in an arc-melting furnace with a wedge-section copper mold. The GFA of these samples was evaluated by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. The results indicated that the gamma* parameter of compositions with high GFA is higher, corresponding to a range in which the lambda parameter is greater than 0.1, which are compositions far from Al solid solution. A new alloy was identified with the best GFA reported so far for this system, showing a maximum thickness of 286 mu m in a wedge-section copper mold. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
The wetting of Ti-Cu alloys on Si3N4 was analyzed by the sessile drop method, using an imaging system with a CCD camera during the heating under argon flow. The contact angle was measured as a function of temperature and time. The samples were cut transversally and characterized by scanning electron microscopy and energy dispersive spectrometry (SEM/EDS). Wettability of the Ti-Cu alloy on Si3N4 is influenced by the reaction between the Ti and the ceramic. The TC1 and TC2 alloys presented low final contact angle values around 2 degrees and 26 degrees, respectively, indicating good wetting on Si3N4. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Results of the surface modification of Ti-16Si-4B powder alloy by nitrogen ion implantation are presented, together with the experimental description of the preparation of that powder by high-energy ball milling and hot pressing. The phase structure, chemical composition and morphology of sample surfaces were observed by utilizing X-ray diffractometer (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM). A tribological characterization was carried out with a ball-on-disc tribometer and an SEM. Friction coefficient is compared with the one obtained for Ti-6Al-4V alloy and the wear scars characterized by SEM/EDS (energy dispersive spectroscopy). The concentration profile of the detected elements have been investigated using Auger electron spectroscopy (AES) depth profiling. Our results show that a shallow implanted layer of oxygen and nitrogen ions were obtained at the Ti-16Si -4B alloy surface, sufficient to modify slightly its tribological properties. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
The crystallisation behaviour for alloys in the Al-rich corner in the Al-La-Ni system is reported in this paper Alloys were selected based on the topological instability criterion (lambda criterion) calculated from the alloy composition and metallic radii of the alloying elements and aluminum Amorphous ribbons were produced by melt-spinning and the crystallisation reactions were analysed by X-ray diffraction and calorimetry The results showed that increasing the values of lambda from 0.072 to 0.16 resulted in the following changes in the crystallisation behaviour, as predicted by the lambda criterion (a) nanocrystallisation of alpha-Al for the alloy composition corresponding to lambda = 0 072 and (b) detection of the glass transition temperature, T(g), for the alloys with composition close to lambda approximate to 0.1 line. For compositions corresponding to both ends of the lambda approximate to 0 1 line (near the binaries lines) T(g) could be detected only in the ""intermediary"" central region, and the alloy we produced in this region was considered the best glass former for the Al-rich corner Also, except for the alloys with the highest NI content, crystallisation proceeded by two distinct exothermic peaks which are typical of nanocrystallisation transformation. These behaviours are discussed in terms of compositional (lambda parameter) and topological aspects to account for cluster formation in the amorphous phase. Crown Copyright (C) 2009 Published by Elsevier B V All rights reserved