178 resultados para preferential substrate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermo-solvatochromism of 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr(2), has been studied in mixtures of water, W, with ionic liquids, ILs, in the temperature range of 10 to 60 degrees C, where feasible. The objectives of the study were to test the applicability of a recently introduced solvation model, and to assess the relative importance of solute-solvent solvophobic interactions. The ILs were 1-allyl-3-alkylimidazolium chlorides, where the alkyl groups are methyl, 1-butyl, and 1-hexyl, respectively. The equilibrium constants for the interaction of W and the ILs were calculated from density data; they were found to be linearly dependent on N(C), the number of carbon atoms of the alkyl group; van't Hoff equation (log K versus 1/T) applied satisfactorily. Plots of the empirical solvent polarities, E(T) (MePMBr(2)) in kcal mol(-1), versus the mole fraction of water in the binary mixture, chi(w), showed non-linear, i.e., non-ideal behavior. The dependence of E(T) (MePMBr(2)) on chi(w), has been conveniently quantified in terms of solvation by W, IL, and the ""complex"" solvent IL-W. The non-ideal behavior is due to preferential solvation by the IL and, more efficiently, by IL-W. The deviation from linearity increases as a function of increasing N(C) of the IL, and is stronger than that observed for solvation of MePMBr(2) by aqueous 1-propanol, a solvent whose lipophilicity is 12.8 to 52.1 times larger than those of the ILs investigated. The dependence on N(C) is attributed to solute-solvent solvophobic interactions, whose relative contribution to solvation are presumably greater than that in mixtures of water and 1-propanol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of solvents on different chemical phenomena, including reactivity, spectroscopic data, and swelling of biopolymers can be rationalized by use of solvatochromic probes, substances whose UV-vis spectra, absorption, or emission are sensitive to the properties of the medium. Thermo-solvatochromism refers to the effect of temperature on solvatochromism. The study of both phenomena sheds light on the relative importance of the factors that contribute to solvation, namely, properties of the probe, those of the solvent (acidity, basicity, dipolarity/polarizability, and lipophilicity), and the temperature. Solvation in binary solvent mixtures is complex because of ""preferential solvation"" of the probe by some component of the mixture. A recently introduced solvent exchange model is based on the presence in the binary solvent mixture of the organic component (molecular solvent or ionic liquid), S, water, W, and a 1:1 hydrogen-bonded species (S-W). Solvation by the latter is more efficient than by its precursor solvents, due to probe-solvent hydrogen-bonding and hydrophobic interactions; dimethyl sulfoxide (DMSO)-W is an exception. Solvatochromic data are employed in order to explain apparently disconnected phenomena, namely, medium effect on the pH-independent hydrolysis of esters, (1)H NMR data of water-ionic liquid (IL) mixtures, and the swelling of cellulose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physical and electrochemical properties of nanostructured Ni-doped manganese oxides (MnO(x)) catalysts supported on different carbon powder substrates were investigated so as to characterize any carbon substrate effect toward the oxygen reduction reaction (ORR) kinetics in alkaline medium. These NiMnO(x)/C materials were characterized using physicochemical analyses. Small insertion of Ni atoms in the MnO(x) lattice was observed, which consists of a true doping of the manganese oxide phase. The corresponding NiMnO(x) phase is present in the form of needles or agglomerates, with crystallite sizes in the order of 1.5-6.7 nm (from x-ray diffraction analyses). Layered manganite (MnOOH) phase has been detected for the Monarch 1000-supported NiMnO(x) material, while different species of MnO(x) phases are present at the E350G and MM225 carbons. Electrochemical studies in thin porous coating active layers in the rotating ring-disk electrode setup revealed that the MnO(x) catalysts present better ORR kinetics and electrochemical stability upon Ni doping. The ORR follows the so-called peroxide mechanism on MnO(x)/C catalysts, with the occurrence of minority HO(2)(-) disproportionation reaction. The HO(2)(-) disproportionation reaction progressively increases with the Ni content in NiMnO(x) materials. The catalysts supported on the MM225 and E350G carbons promote faster disproportionation reaction, thus leading to an overall four-electron ORR pathway. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3528439] All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach for the integration of dual contactless conductivity and amperometric detection with an electrophoresis microchip system is presented. The PDMS layer with the embedded channels was reversibly sealed to a thin glass substrate (400 mu m), on top of which a palladium electrode had been previously fabricated enabling end-channel amperometric detection. The thin glass substrate served also as a physical wall between the separation channel and the sensing copper electrodes for contactless conductivity detection. The latter were not integrated in the microfluidic device, but fabricated on an independent plastic substrate allowing a simpler and more cost-effective fabrication of the chip. PDMS/glass chips with merely contactless conductivity detection were first characterized in terms of sensitivity, efficiency and reproducibility. The separation efficiency of this system was found to be similar or slightly superior to other systems reported in the literature. The simultaneous determination of ionic and electroactive species was illustrated by the separation of peroxynitrite degradation products, i.e. NO(3)(-) (non-electroactive) and NO(2)(-) (electroactive), using hybrid PDMS/glass chips with dual contactless conductivity and amperometric detection. While both ions were detected by contactless conductivity detection with good efficiency, NO(2)(-) was also simultaneously detected amperometrically with a significant enhancement in sensitivity compared to contactless conductivity detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blanks (flasks without substrate containing only inoculum and medium) are used in vitro to correct for gas. CH(4) and residual organic matter (OM) fermented in inoculum. However inclusion of rumen fermentation modifiers may affect fermentation of OM in the substrate and inoculum. Thus, data correction using blanks that lack additives may result in inaccurate adjustment for background fermentation. Our objective was to evaluate impacts of using blanks containing additive (i.e., specific blanks) or blanks without additive on estimation of in vitro net gas and CH(4) production. We used the semi-automatic in vitro gas production technique including monensin sodium at 2.08 mg/l of buffered rumen fluid (Experiment 1) or carvacrol, eugenol and 1,8-cineol at 667 mg/l (Experiment 2) in flasks with substrate and in blank flasks. At 16h of incubation, monensin reduced (P <= 0.02) total gas production in flasks containing substrate (162.0 ml versus 146.3 ml) and in blanks (84.4 ml versus 79.2 ml). Total methane production was also decreased (P <= 0.05) by adding monensin to flasks containing substrate (15.7 ml versus 11.9 ml) as well as in blanks (6.4 ml versus 5.0 ml). Inclusion of carvacrol or eugenol reduced (P <= 0.05) total gas and CH(4) production in flasks with substrate and in blanks, but in a more pronounced manner than monensin. For these three additives, correction for blank without additive resulted in lower net gas and CH(4) production than correction for a treatment specific blank. For instance, correcting carvacrol data using a blank without the additive resulted in negative net gas and CH(4) production (-6.5 and -1.5 ml. respectively). These biologically impossible results occurred because total gas and CH(4) production in blanks without carvacrol (46.1 and 2.1 ml, respectively) were higher than in flasks containing substrate plus carvacrol (39.7 and 0.6 ml, respectively). Results demonstrated that inclusion of rumen additives affected fermentation of OM in the substrate and the inoculum. Thus, correction of gas and CH(4) production using blanks without additives resulted in overestimation of these variables. Blanks containing the additive of interest should be included when rumen fermentation modifiers are evaluated in vitro. This paper is part of the special issue entitled: Greenhouse Gases in Animal Agriculture Finding a Balance between Food and Emissions, Guest Edited by T.A. McAllister, Section Guest Editors: K.A. Beauchemin, X. Hao, S. McGinn and Editor for Animal Feed Science and Technology, P.H. Robinson. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of this study were to characterise four essential oils (EO) chemically and to evaluate their effect on ruminal fermentation and methane emission in vitro. The investigated EO were isolated from Achillea santolina, Artemisia judaica, Schinus terebinthifolius and Mentha microphylla, and supplemented at four levels (0, 25, 50 and 75 l) to 75ml of buffered rumen fluid plus 0.5 g of substrate. The main components of the EO were piperitone (49.1%) and camphor (34.5%) in A. judaica, 16-dimethyl 15-cyclooactdaiene (60.5%) in A. santolina, piperitone oxide (46.7%) and cis-piperitone oxide (28%) in M. microphylla, and -muurolene (45.3%) and -thujene (16.0%) in S. terebinthifolius. The EO from A. santolina (at 25 and 50 l), and all levels of A. judaica increased the gas production significantly, but S. terebinthifolius (at 50 and 75 l), A. santolina (at 75 l) and all levels of M. microphylla decreased the gas production significantly in comparison with the control. The highest levels of A. santolina and A. judaica, and all doses from M. microphylla EO inhibited the methane production along with a significant reduction in true degradation of dry matter and organic matter, protozoa count and NH3-N concentration. It is concluded that the evaluated EO have the potential to affect ruminal fermentation efficiency and the EO from M. microphylla could be a promising methane mitigating agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shoot tips of Ananas comosus `Imperial were rooted in vitro under two environments (artificial and natural light) and after two months the plantlets were transferred to commercial substrate (Plantmax (R)) in a greenhouse. Plant growth and leaf anatomy were evaluated at 0, 7, 15, 30 and 60-days during acclimatization. The in vitro rooting under natural light provides better agronomic and anatomical performances of Ananas comosus plants, with the benefit of saving electric energy for artificial lumination in vegetal tissue culture laboratories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiotensin I-converting enzyme (ACE) is recognized as one of the main effector molecules involved in blood pressure regulation. In the last few years some polymorphisms of ACE such as the insertion/deletion (I/D) polymorphism have been described, but their physiologic relevance is poorly understood. In addition, few studies investigated if the specific activity of ACE domain is related to the I/D polymorphism and if it can affect other systems. The aim of this study was to establish a biochemical and functional characterization of the I/D polymorphism and correlate this with the corresponding ACE activity. For this purpose, 119 male brazilian army recruits were genotyped and their ACE plasma activities evaluated from the C- and N-terminal catalytic domains using fluorescence resonance energy transfer (FRET) peptides, specific for the C-domain (Abz-LFK(Dnp)OH), N-domain (Abz-SDK(Dnp)P-OH) and both C- and N-domains (Abz-FRK(Dnp)P-OH). Plasma kallikrein activity was measured using Z-Phe-Arg-AMC as substrate and inhibited by selective plasma kallikrein inhibitor (PKSI). Some physiological parameters previously described related to the I/D polymorphism such as handgrip strength, blood pressure, heart rate and BMI were also evaluated. The genotype distribution was II n = 27, ID n = 64 and DD n = 28. Total plasma ACE activity of both domains in II individuals was significantly lower in comparison to ID and DD. This pattern was also observed for C- and N-domain activities. Difference between ID and DD subjects was observed only with the N-domain specific substrate. Blood pressure, heart rate, handgrip strength and BMI were similar among the genotypes. This polymorphism also affected the plasma kallikrein activity and DD group presents high activity level. Thus, our data demonstrate that the I/D ACE polymorphism affects differently both ACE domains without effects on handgrip strength. Moreover, this polymorphism influences the kallikrein-kinin system of normotensive individuals. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Active lymphocytes (LY) and macrophages (M Phi) are involved in the pathophysiology of rheumatoid arthritis (RA) Due to its anti-inflammatory effect. physical exercise may be beneficial in RA by acting on the immune system (IS) Thus, female Wistar rats with type II collagen-induced arthritis (CIA) were submitted to swimming training (6 weeks. 5 days/week. 60 min/day) and some biochemical and immune parameters, such as the metabolism of glucose and glutamine and function of LY and M. were evaluated In addition, plasma levels of some hormones and of interleukin-2 (IL-2) were also determined Results demonstrate that CIA increased lymphocyte proliferation (1.9- and 1 7-fold, respectively, in response to concanavalin A (ConA) and lipopolysaccharide (LPS)), as well as macrophage H(2)O(2) production (1 6-fold), in comparison to control Exercise training prevented the activation of immune cells, induced by CIA. and established a pattern of substrate utilization similar to that described as normal for these cells. Exercise also promoted an elevation of plasma levels of corticosterone (22 2%), progesterone (1 7-fold) and IL-2 (2 6-fold) Our data suggest that chronic exercise is able to counterbalance the effects of CIA on cells of the IS. reinforcing the proposal that the benefits of exercise may not be restricted to aerobic capacity and/or strength improvement Copyright (C) 2010 John Wiley & Sons, Ltd

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiomyocyte hypertrophy occurs in response to a variety of physiological and pathological stimuli. While pathological hypertrophy in heart failure is usually coupled with depressed contractile function, physiological hypertrophy associates with increased contractility. In the present study, we explored whether 8 weeks of moderate intensity exercise training would lead to a cardiac anti-remodelling effect in an experimental model of heart failure associated with a deactivation of a pathological (calcineurin/NFAT, CaMKII/HDAC) or activation of a physiological (Akt-mTOR) hypertrophy signalling pathway. The cardiac dysfunction, exercise intolerance, left ventricle dilatation, increased heart weight and cardiomyocyte hypertrophy from mice lacking alpha(2A) and alpha(2C) adrenoceptors (alpha(2A)/alpha(2C)ARKO mice) were associated with sympathetic hyperactivity induced heart failure. The relative contribution of Ca(2+)-calmodulin high-affinity (calcineurin/NFAT) and low-affinity (CaMKII/HDAC) targets to pathological hypertrophy of alpha(2A)/alpha(2C)ARKO mice was verified. While nuclear calcineurin B, NFATc3 and GATA-4 translocation were significantly increased in alpha(2A)/alpha(2C)ARKO mice, no changes were observed in CaMKII/HDAC activation. As expected, cyclosporine treatment decreased nuclear translocation of calcineurin/NFAT in alpha(2A)/alpha(2C)ARKO mice, which was associated with improved ventricular function and a pronounced anti-remodelling effect. The Akt/mTOR signalling pathway was not activated in alpha(2A)/alpha(2C)ARKO mice. Exercise training improved cardiac function and exercise capacity in alpha(2A)/alpha(2C)ARKO mice and decreased heart weight and cardiomyocyte width paralleled by diminished nuclear NFATc3 and GATA-4 translocation as well as GATA-4 expression levels. When combined, these findings support the notion that deactivation of calcineurin/NFAT pathway-induced pathological hypertrophy is a preferential mechanism by which exercise training leads to the cardiac anti-remodelling effect in heart failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-kappa B activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, I kappa B and NF-kappa B) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2 alpha phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DA SILVA, A. S. R., J. R. PAULI, E. R. ROPELLE, A. G. OLIVEIRA, D. E. CINTRA, C. T. DE SOUZA, L. A. VELLOSO, J. B. C. CARVALHEIRA, and M. J. A. SAAD. Exercise Intensity, Inflammatory Signaling, and Insulin Resistance in Obese Rats. Med. Sci. Sports Exerc., Vol. 42, No. 12, pp. 2180-2188, 2010. Purpose: To evaluate the effects of intensity of exercise on insulin resistance and the expression of inflammatory proteins in the skeletal muscle of diet-induced obese (DIO) rats after a single bout of exercise. Methods: In the first exercise protocol, the rats swam for two 3-h bouts, separated by a 45-min rest period (with 6 h in duration-DIO + EXE), and in the second protocol, the rats were exercised with 45 min of swimming at 70% of the maximal lactate steady state-MLSS (DIO + MLSS). Results: Our data demonstrated that both protocols of exercise increased insulin sensitivity and increased insulin-stimulated tyrosine phosphorylation of insulin receptor and insulin receptor substrate 1 and serine phosphorylation of protein kinase B in the muscle of DIO rats by the same magnitude. In parallel, both exercise protocols also reduced protein tyrosine phosphatase 1B activity and insulin receptor substrate 1 serine phosphorylation, with concomitant reduction in c-jun N-terminal kinase and I kappa B kinase activities in the muscle of DIO rats in a similar fashion. Conclusions: Thus, our data demonstrate that either exercise protocols with low intensity and high volume or exercise with moderate intensity and low volume represents different strategies to restore insulin sensitivity with the same efficacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One mannanase and one of the three xylanases produced by Ceriporiopsis subvermispora grown on Pinus taeda wood chips were characterized. A combination of ion exchange chromatography and SDS-PAGE data revealed the existence of a high-molecular-weight mannanase of 150 kDa that was active against galactoglucomannan and xylan, Its activity was optimal at pH 4.5. The K(m) value with galactoglucomannan as substrate was 0.50 mg ml (1). One xylanase with molecular mass of 79 kDa was also purified and characterized. Its activity was optimal at 60 degrees C and pH 8.0. Its K(m) value with birchwood xylan as substrate was 1.65 mg ml (1). Both the mannanase and the 79 kDa xylanase displayed relatively high activity on carboxymethyl cellulose. The sensitivity of the xylanase and mannanase to various salts was evaluated. None of the tested salts inhibited the xylanase, but Mn(+2), Fe(+3), and Cu(+2) were strong inhibitors for the mannanase. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of glycerol on xylose-to-xylitol bioconversion by Candida guilliermondii was evaluated by its addition (0.7 and 6.5 g/l) to semidefined media (xylose as a substrate). The glycerol concentrations were chosen based on the amounts produced during previous studies on xylitol production by C. guilliermondii. Medium without glycerol addition (control) and medium containing glycerol (53 g/l) in substitution to xylose were also evaluated. According to the results, the addition of 0.7 g/l glycerol to the fermentation medium favored not only the yield (Y (P/S) = 0.78 g/g) but also the xylitol productivity (Q (P) = 1.13 g/l/h). During the xylose-to-xylitol bioconversion, the formation of byproducts (glycerol and ethanol) was observed for all conditions employed. In relation to the cellular growth, glycerol as the only carbon source for C. guilliermondii was better than xylose or xylose and glycerol mixtures, resulting in a maximum cellular concentration (5.34 g/l).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzymatic hydrolysis of brewer`s spent grain in three different forms: original (untreated), pretreated by dilute acid (cellulignin), and pretreated by a sequence of dilute acid and dilute alkali (cellulose pulp), was studied to verify the effect of hemicellulose and lignin on cellulose conversion into glucose. The hydrolysis was carried out using a commercial cellulase concentrate (Celluclast 1.5 L) in an enzyme/substrate ratio of 45 FPU/g, 2% (w/v) substrate concentration, 45 degrees C for 96 h. According to the results, the cellulose hydrolysis was affected by the presence of hemicellulose and/or lignin in the sample. The cellulose conversion ratio (defined as glucose yield + cellobiose yield) from cellulignin was 3.5-times higher than that from untreated sample, whereas from cellulose pulp such value was 4-times higher, correspondent to 91.8% (glucose yield of 85.6%). This best result was probably due to the strong modification in the material structure caused by the hemicellulose and lignin removal from the sample. As a consequence, the cellulose fibers were separated being more susceptible to the enzymatic attack. It was concluded that the lower the hemicellulose and lignin contents in the sample, the higher the efficiency of cellulose hydrolysis. (C) 2007 Elsevier Inc. All rights reserved.