109 resultados para oxygen-sensing pathway
Resumo:
In the present study, we investigated whether saliva from Phlebotomus papatasi and Phlebotomus duboscqi inhibited antigen-induced neutrophil migration and the mechanisms involved in these effects. The pretreatment of immunized mice with salivary gland extracts (SGE) of both phlebotomines inhibited OVA challenge-induced neutrophil migration and release of the neutrophil chemotactic mediators, MIP-1 alpha, TNF-alpha, and leukotriene B-4 (LTB4). Furthermore, SGE treatment enhanced the production of anti-inflammatory mediators, IL-10 and PGE(2). SGE treatments failed to inhibit neutrophil migration and MIP-1 alpha and LTB4 production in IL-10(-/-) mice, also failing in mice treated with nonselective (indomethacin) or selective (rofecoxibe) cyclooxygenase (COX) inhibitors. COX inhibition resulted in diminished SGE-induced IL-10 production, and PGE(2) release triggered by SGE remained increased in IL-10(-/-) mice, suggesting that prostanoids are acting through an IL-10-dependent mechanism. SGE treatments in vivo reduced the OVA-induced lymphoproliferation of spleen-derived cells. Further, the in vitro incubation of bone marrow-derived dendritic cells (DC) with SGE inhibited the proliferation of CD4(+) T cells from OVA-immunized mice, which was reversed by indomethacin and anti-IL-10 antibody treatments. Supporting these results, SGE induced the production of PGE(2) and IL-10 by DC, which were blocked by COX inhibition. These effects were associated with the reduction of DC-membrane expression of MHC-II and CD86 by SGE treatment. Altogether, the results showed that Phlebotomine saliva inhibits immune inflammation-induced neutrophil migration by an autocrine DC sequential production of PGE(2)/IL-10, suggesting that the saliva constituents might be promising therapeutic molecules to target immune inflammatory diseases.
Resumo:
Ligands for peroxisome proliferator-activated receptor gamma (PPAR-gamma), such as 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) have been implicated as a new class of anti-inflammatory compounds with possible clinical applications. Based on this concept, this investigation was designed to determine the effect of 15d-PGJ(2)-mediated activation of PPAR-gamma ligand on neutrophil migration after an inflammatory stimulus and clarify the underlying molecular mechanisms using a mouse model of peritonitis. Our results demonstrated that 15d-PGJ(2) administration decreases leukocyte rolling and adhesion to the inflammated mesenteric tissues by a mechanism dependent on NO. Specifically, pharmacological inhibitors of NO synthase remarkably abrogated the 15d-PGJ(2)-mediated suppression of neutrophil migration to the inflammatory site. Moreover, inducible NOS(-/-) mice were not susceptible to 15d-PGJ(2)-mediated suppression of neutrophil migration to the inflammatory sites when compared with their wild type. In addition, 15d-PGJ(2)-mediated suppression of neutrophil migration appeared to be independent of the production of cytokines and chemokines, since their production were not significantly affected in the carrageenan-injected peritoneal cavities. Finally, up-regulation of carrageenan-triggered ICAM-I expression in the mesenteric microcirculation vessels was abrogated by pretreatment of wild-type mice with 15d-PGJ(2), whereas 15d-PGJ(2) inhibited F-actin rearrangement process in neutrophils. Taken together these findings demonstrated that 15d-PGJ(2) suppresses inflammation-initiated neutrophil migration in a mechanism dependent on NO production in mesenteric tissues.
Resumo:
Our objective was to evaluate the role of heme-oxygenase 1 (HO-1)/biliverdin/CO pathway in gastric defense against ethanol-induced gastric damage in mice. Mice were pre-treated with saline, hemin (HO-1 inducer), biliverdin (HO-1 product), dimanganese decacarbonyl (DMDC, CO donor) or zinc protoporphyrin IX (ZnPP IX, HO-1 antagonist). Another group received soluble guanylate cyclase (sGC) inhibitor (ODQ) 30 min before hemin, biliverdin or DMDC. After 30 min, gastric damage was induced by ethanol. After one hour, rats were sacrificed. Gastric lesions were measured using a computer planimetry program, and gastric corpus pieces were assayed for malonylaldehyde (MDA), glutathione (GSH) or bilirubin. HO-1 expression was determined after saline or ethanol administration by polymerase chain reaction (PCR) or immunohistochemistry. Ethanol (25% or 50%) induced gastric damage, increased MDA levels and reduced GSH in the gastric tissue. Ethanol 50% increased HO-1 mRNA transcripts, HO-1 immunoreactivity, and bilirubin concentration in gastric mucosa. Pre-treatment with hemin reduced gastric damage and MDA formation and increased GSH concentration in the gastric mucosa. ZnPP IX amplified the ethanol-induced gastric lesion, increased MDA formation and decreased GSH concentration in gastric mucosa. Biliverdin and DMDC reduced gastric damage and MDA formation and increased GSH concentration in the gastric tissue. ODQ completely abolished the DMDC protective gastric effect However, effects of hemin or biliverdin did not change with ODQ treatment. Our results suggest that HO-1/biliverdin/CO pathway plays a protective role against ethanol-induced gastric damage through mechanisms that can be dependent (CO) or independent (biliverdin) of sGC activation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The modulatory effect of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway on sympathetic preganglionic neurons still deserves further investigation. The present study was designed to examine the role of the spinal cord NO/cGMP pathway in controlling mean arterial pressure and heart rate. We observed that intrathecal administration of the NO synthase inhibitor N omega-Nitro-L-arginine methyl ester hydrochloride (L-NAME) causes an increase in mean arterial pressure but does not affect heart rate. Intrathecal administration of the soluble guanylyl cyclase inhibitor 1H-[1,2,4] Oxadiazolo[4,3-a] quinoxalin-1-one (ODQ) does not change mean arterial pressure and heart rate. The precursor for NO synthesis, L-arginine, reduces both mean arterial pressure and heart rate while administration of ODQ before L-arginine impaired decreases in mean arterial pressure and heart rate. Administration of the N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5) after L-NAME does not affect increases in mean arterial pressure promoted by NO synthase inhibition. Although the hypotensive and bradycardic responses induced by intrathecal administration of L-arginine depend on cGMP, our results indicate that NO acts to tonically inhibit SPNs, independent of either cGMP or NMDA receptors.
Resumo:
Heat shock proteins belong to a conserved superfamily of molecular chaperones found in prokaryotes and eukaryotes. These proteins are linked to a myriad of physiological functions. In this study, we show that the N. crassa hsp70-1 (NCU09602.3) and hsp70-2 (NCU08693.3) genes are preferentially expressed in an acidic milieu after 15 h of cell growth in sufficient phosphate at 30A degrees C. No significant accumulation of these transcripts was detected at alkaline pH values. Both genes accumulated to a high level in mycelia that were incubated for 1 h at 45A degrees C, regardless of the phosphate concentration and extracellular pH changes. Transcription of the hsp70-1 and hsp70-2 genes was dependent on the pacC (+) background in mycelia cultured under optimal growth conditions or at 45A degrees C. The pacC gene encodes a Zn-finger transcription factor that is involved in the regulation of gene expression by pH. Heat shock induction of these two hsp genes in mycelia incubated in low-phosphate medium was almost not altered in the nuc-1 (-) background under both acidic and alkaline pH conditions. The NUC-1 transcriptional regulator is involved in the derepression of nucleases, phosphatases, and transporters that are necessary for fulfilling the cell`s phosphate requirements. Transcription of the hsp70-3 (NCU01499.3) gene followed a different pattern of induction-the gene was depressed under insufficient phosphate conditions but was apparently unaffected by alkalinization of the culture medium. Moreover, this gene was not induced by heat shock. These results reveal novel aspects of the heat-sensing network of N. crassa.
Resumo:
The molecular mechanism that controls the response to phosphate shortage in Neurospora crassa involves four regulatory genes - nuc-2, preg, pgov, and nuc-1. Phosphate shortage is sensed by the nuc-2 gene, the product of which inhibits the functioning of the PREG-PGOV complex. This allows the translocation of the transcriptional factor NUC-1 into the nucleus, which activates the transcription of phosphate-repressible phosphatases. The nuc-2A mutant strain of N. crassa carries a loss-of-function mutation in the nuc-2 gene, which encodes an ankyrin-like repeat protein. In this study, we identified transcripts that are downregutated in the nuc-2A mutant strain. Functional grouping of these expressed sequence tags allowed the identification of genes that play essential roles in different cellular processes such as transport, transcriptional regulation, signal transduction, metabolism, protein synthesis, protein fate, and development. These results reveal novel aspects of the phosphorus-sensing network in N. crassa. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
To identify genes differentially expressed in a strain of the mold Aspergillus nidulans carrying a loss-of-function mutation in palA, a gene in the pH-responsive signal transduction pathway, suppression subtractive hybridization was performed between RNA isolated from the biA1 and biA1 palA1 strains grown under limiting inorganic phosphate at pH 5.0. We have identified several genes upregulated in the biA1 palA1 mutant strain that play important roles in mitotic fidelity, stress responses, enzyme secretion, signal transduction mechanisms, development, genome stability, phosphate sensing, and transcriptional regulation among others. The upregulation of eight of these transcripts was also validated by Northern blot. Moreover, we show that a loss of function mutation in the palA gene drastically reduced the neutral sugar content of the acid phosphatase PacA secreted by the fungus A. nidulans grown at pH 5.0 compared with a control strain.
Resumo:
Purpose: Eicosapentaenoic acid has been tested in bladder cancer as a synergistic cytotoxic agent in the form of meglumine-eicosapentaenoic acid, although its mechanism of action is poorly understood in this cancer. The current study analyzed the mechanisms by which eicosapentaenoic acid alters T24/83 human bladder cancer metabolism in vitro. Materials and Methods: T24/83 human bladder cancer cells were exposed to eicosapentaenoic acid for 6 to 24 hours in vitro and incorporation profiles were determined. Effects on membrane phospholipid incorporation, energy metabolism, mitochondrial activity, cell proliferation and apoptosis were analyzed Reactive oxygen species and lipid peroxide production were also determined. Results: Eicosapentaenoic acid was readily incorporated into membrane phospholipids with a considerable amount present in mitochondrial cardiolipin. Energy metabolism was significantly altered by eicosapentaenoic acid, accompanied by decreased mitochondrial membrane potential, and increased lipid peroxide and reactive oxygen species generation. Subsequently caspase-3 activation and apoptosis were detected in eicosapentaenoic acid exposed cells, leading to decreased cell numbers. Conclusions: These findings confirm that eicosapentaenoic acid is a potent cytotoxic agent in bladder cancer cells and provide important insight into the mechanisms by which eicosapentaenoic acid causes these changes. The changes in membrane composition that can occur with eicosapentaenoic acid likely contribute to the enhanced drug cytotoxicity reported previously in meglumine-eicosapentaenoic acid/epirubicin/mitomycin studies. Dietary manipulation of the cardiolipin fatty acid composition may provide an additional method for stimulating cell death in bladder cancer. In vivo studies using intravesical and dietary manipulation of fatty acid metabolism in bladder cancer merit further attention.
Resumo:
Considering that the importance of cancer/testis (CT) antigens in multiple myeloma (MM) biology is still under investigation, the present study aimed to: (1) identify genes differentially expressed in MM using microarray analysis of plasma cell samples, separated according to the number of expressed CTs; (2) examine possible pathways related to MM pathogenesis; (3) validate the expression of candidate genes by quantitative real-time PCR (RQ-PCR). Three samples predominantly positive (>6 expressed), including the U266 cell line, and three samples predominantly negative (0 or 1 expressed CT for the 13 analyzed CT antigens), were submitted for microarray analysis. Validation by RQ-PCR from 24 MM samples showed that the ITGAS gene was downregulated in predominantly positive (>6 expressed CTs, p = 0.0030) and in tumor versus normal plasma cells (p = 0.0182). The RhoD gene was overexpressed in tumor plasma cells when compared to normal plasma cells (p = 0.0339). Results of the microarray analysis corroborate the hypothesis that MM could be separated into predominantly positive and predominantly negative expression. The differential expression of ITGA5 and RhoD suggests disruption of the focal adhesion pathway in MM and offers a new target field to be explored in this disease.
Resumo:
Common features such as elastic fibre destruction, mucoid accumulation, and smooth muscle cell apoptosis are co-localized in aneurysms of the ascending aorta of various aetiologies. Recent experimental studies reported an activation of TGF-beta in aneurysms related to Marfan (and Loeys-Dietz) syndrome. Here we investigate TGF-beta signalling in normal and pathological human ascending aortic wall in syndromic and non-syndromic aneurysmal disease. Aneurysmal ascending aortic specimens, classified according to aetiology: syndromic MFS (n = 15, including two mutations in TGFBR2), associated with BAV (n = 15) or degenerative forms (n = 19), were examined. We show that the amounts of TGF-beta 1 protein retained within and released by aneurysmal tissue were greater than for control aortic tissue, whatever the aetiology, contrasting with an unchanged TGF-beta 1 mRNA level. The increase in stored TGF-beta 1 was associated with enhanced LTBP-I protein and mRNA levels. These dysiregulations of the extracellular ligand are associated with higher phosphorylated Smad2 and Smad2 mRNA levels in the ascending aortic wall from all types of aneurysm. This activation correlated with the degree of elastic fibre fragmentation. Surprisingly, there was no consistent association between the nuclear location of pSmad2 and extracellular TGF-beta 1 and LTBP-I staining and between their respective mRNA expressions. In parallel, decorin. was focally increased in aneurysmal media, whereas biglycan was globally decreased in aneurysmal aortas. In conclusion, this study highlights independent dysregulations of TGF-beta retention and Smad2 signalling in syndromic and non-syndromic aneurysms of the ascending aorta. Copyright (C) 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
Oral squamous cell carcinoma (OSCC) accounts for more than 90% of the malignant neoplasms that arise in the mucosa of the upper aerodigestive tract. Recent studies of cleft lip/palate have shown the association of genes involved in cancer. WNT pathway genes have been associated with several types of cancer and recently with cleft lip/palate. To investigate if genes associated with cleft lip/palate were also associated with oral cancer, we genotyped 188 individuals with OSCC and 225 control individuals for markers in AXIN2, AXIN1, GSK3 beta, WNT3A, WNT5A, WNT8A, WNT11, WNT3, and WNT9B. Statistical analysis was performed with PLINK 1.06 software to test for differences in allele frequencies of each polymorphism between cases and controls. We found association of SNPs in GSK3B (p = 0.0008) and WNT11 (p = 0.03) with OSCC. We also found overtransmission of GSK3B haplotypes in OSCC cases. Expression analyses showed up-regulation of WNT3A, GSK3B, and AXIN1 and down-regulation of WNT11 in OSCC in comparison with control tissues (P < 0.001). Additional studies should focus on the identification of potentially functional variants in these genes as contributors to human clefting and oral cancer.
Resumo:
The aim of the present study was to investigate the role of the spinal cord heme oxygenase (HO)-carbon monoxide (CO)-soluble guanylate cyclase (sGC)-cGMP pathway in nociceptive response of rats to the formalin experimental nociceptive model. Animals were handled and adapted to the experimental environment for a few days before the formalin test was applied. For the formalin test 50 mu l of a 1% formalin solution was injected subcutaneously in the dorsal surface of the right hind paw. Following injections, animals were observed for I h and flinching behavior was measured as the nociceptive response. Thirty min before the test, rats were pretreated with intrathecal injections with the HO inhibitor, zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) or heme-lysinate, which is known to induce the HO pathway. Control animals were treated with vehicles. We observed a significant increase in nociceptive response of rats treated with ZnDPBG, and a drastic reduction of flinching nociceptive behavioral response in the heme-lysinate treated animals. Furthermore, the HO pathway seems to act via cGMP, since methylene blue (a sGC inhibitor) prevented the reduction of flinching nociceptive behavioral response caused by heme-lysinate. These findings strongly indicate that the HO pathway plays a spinal antinociceptive role during the formalin test, acting via cGMP. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Heme oxygenase-carbon monoxide-cGMP (HO-CO-cGMP) pathway has been reported to be involved in peripheral and spinal modulation of inflammatory pain. However, the involvement of this pathway in the modulation of acute painful stimulus in the absence of inflammation remains unknown. Thus, we evaluated the involvement of the HO-CO-cGMP pathway in nociception by means the of analgesia index (AI) in the tail flick test. Rats underwent surgery for implantation of unilateral guide cannula directed toward the lateral ventricle and after the recovery period (5-7 days) were subjected to the measures of baseline tail flick test Animals were divided into groups to assess the effect of intracerebroventricular administration (i.c.v.) of the following compounds: ZnDPBG (HO inhibitor) or vehicle (Na(2)CO(3)), heme-lysinate (substrate overload) or vehicle (L-lysine), or the selective inhibitor of soluble guanilate cyclase ODQ or vehicle (DMSO 1%) following the administration of heme-lysinate or vehicle. Heme overload increased AI, indicating an antinociceptive role of the pathway. This response was attenuated by i.c.v. pretreatment with the HO inhibitor ZnDPBG. In addition, this effect was dependent on cGMP activity, since the pretreatment with ODQ blocked the increase in the AI. Because CO produces most of its actions via cGMP, these data strongly imply that CO is the HO product involved in the antinociceptive response. This modulation seems to be phasic rather than tonic, since i.c.v. treatment with ZnDPBG or ODQ did not alter the AI. Therefore, we provide evidence consistent with the notion that HO-CO-cGMP pathway plays a key phasic antinociceptive role modulating noninflammatory acute pain. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nitric oxide has been reported to modulate fever in the brain. However, the sites where NO exerts this modulation remain somewhat unclear. Locus coeruleus (LC) neurons express not only nitric oxide synthase (NOS) but also soluble guanylyl cyclase (sGC). In the present study, we evaluated in vivo and ex vivo the putative role of the LC NO-cGMP pathway in fever. To this end, deep body temperature was measured before and after pharmacological modulations of the pathway. Moreover, nitrite/nitrate (NOx) and cGMP levels in the LC were assessed. Conscious rats were microinjected within the LC with a non-selective NOS inhibitor (NG-monomethyl-l-arginine acetate), a NO donor (NOC12), a sGC inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) or a cGMP analogue (8-bromo-cGMP) and injected intraperitoneally with endotoxin. Inhibition of NOS or sGC before endotoxin injection significantly increased the latency to the onset of fever. During the course of fever, inhibition of NOS or sGC attenuated the febrile response, whereas microinjection of NOC12 or 8-bromo-cGMP increased the response. These findings indicate that the LC NO-cGMP pathway plays a propyretic role. Furthermore, we observed a significant increase in NOx and cGMP levels, indicating that the febrile response to endotoxin is accompanied by stimulation of the NO-cGMP pathway in the LC.
Resumo:
Sepsis induces production of inflammatory mediators such as nitric oxide (NO) and causes physiological alterations, including changes in body temperature (T(b)). We evaluated the involvement of the central NO cGMP pathway in thermoregulation during sepsis induced by cecal ligation and puncture (CLP), and analyzed its effect on survival rate. Male Wistar rats with a T(b) probe inserted in their abdomen were intracerebroventricularly injected with 1 mu L N(G)-nitro-L-arginine methyl ester (L-NAME, 250 mu g), a nonselective NO synthase (NOS) inhibitor; or aminoguanidine (250 mu g), an inducible NOS inhibitor; or 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 0.25 mu g), a guanylate cyclase inhibitor. Thirty minutes after injection, sepsis was induced by cecal ligation and puncture (CLP), or the rats were sham operated. The animals were divided into 2 groups for determination of T(b) for 24 h and assessment of survival during 3 days. The drop in T(b) seen in the CLP group was attenuated by pretreatment with the NOS inhibitors (p < 0.05) and blocked with ODQ. CLP rats pretreated with either of the inhibitors showed higher survival rates than vehicle injected groups (p < 0.05), and were even higher in the ODQ pretreated group. Our results showed that the effect of NOS inhibition on the hypothermic response to CLP is consistent with the role of nitrergic pathways in thermoregulation.