98 resultados para n methyl dextro aspartic acid receptor blocking agent
Resumo:
Mast cell tumor (MCT) is one of the most prevalent neoplasms that affect the skin and soft tissue of dogs. Because mast cell tumors present a great variety of clinical appearance and behavior, their treatment becomes a challenge. While retinoids are well recognized as promising antitumor agents, there have been only a few reports about retinoids` effect on canine cancers. The aim of this study was to investigate the chemosensitivity of MCT grades II and III to all-trans retinoic acid (ATRA). Immediately after surgical resection, MCT were prepared for primary culture. Samples of MCTs were also fixed in formalin for histopathology and grading according to the classification of Patnaik et al. (Veterinary Pathology 21(5):469-474, 1984). The best results were obtained when neoplastic mast cells were co-cultivated with fibroblasts. Cultured mast cells were, then, treated with concentrations of 10(-4) to 10(-7) M of ATRA, in order to evaluate their chemosensitivity to this retinoid. MTT assay was performed to estimate cell growth and death. The highest level of mast cell chemosensivity was obtained at the dose of 10(-4) M (p < 0,002). MCT of grades II or III were equally susceptible to the treatment with ATRA. Cell death was observed on the first 24 h until 48 h. According to these results, ATRA may be a potential chemotherapeutic agent for the treatment of canine MCT.
Resumo:
Oral squamous cell carcinoma (OSCC) may arise from potentially malignant oral lesions. All-trans retinoic acid (atRA), which plays a role in cell growth and differentiation, has been studied as a possible chemotherapeutic agent in the prevention of this progression. While the mechanism by which atRA suppresses cell growth has not been completely elucidated, it is known that homeobox genes are atRA targets. To determine if these genes are involved in the atRA-mediated OSCC growth inhibition, PCR array was performed to evaluate the expression of 84 homeobox genes in atRA-sensitive SCC-25 cells compared to atRA-resistant SCC-9 cells following 7 days with atRA treatment. Results showed that the expression of 8 homeobox genes was downregulated and expression of 4 was upregulated in SCC-25 cells but not in SCC-9 cells. Gene expression levels were confirmed for seven of these genes by RT-qPCR. Expression of three genes that showed threefold downregulation was evaluated in SCC-25 cells treated with atRA for 3, 5, and 7 days. Three different patterns of atRA-dependent gene expression were observed. ALX1 showed downregulation only on day 7. DLX3 showed reduced expression on day 3 and further reduced on clay 7. TLX1 showed downregulation only on days 5 and 7. Clearly the expression of homeobox genes is modulated by atRA in OSCC cell lines. However, the time course of this modulation suggests that these genes are not direct targets of atRA mediating OSCC growth suppression. Instead they appear to act as downstream effectors of atRA signaling. J. Cell. Biochem. 111: 1437-1444, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Trypanosoma cruzi infection causes intense myocarditis, leading to cardiomyopathy and severe cardiac dysfunction. Protective adaptive immunity depends on balanced signaling through a T cell receptor and coreceptors expressed on the T cell surface. Such coreceptors can trigger stimulatory or inhibitory signals after binding to their ligands in antigen-presenting cells (APC). T. cruzi modulates the expression of coreceptors in lymphocytes after infection. Deregulated inflammation may be due to unbalanced expression of these molecules. Programmed death cell receptor 1 (PD-1) is a negative T cell coreceptor that has been associated with T cell anergy or exhaustion and persistent intracellular infections. We aimed to study the role of PD-1 during T. cruzi-induced acute myocarditis in mice. Cytometry assays showed that PD-1 and its ligands are strongly upregulated in lymphocytes and APC in response to T. cruzi infection in vivo and in vitro. Lymphocytes infiltrating the myocardium exhibited high levels of expression of these molecules. An increased cardiac inflammatory response was found in mice treated with blocking antibodies against PD-1, PD-L1, and to a lesser extent, PD-L2, compared to that found in mice treated with rat IgG. Similar results in PD-1(-/-) mice were obtained. Moreover, the PD-1 blockade/deficiency led to reduced parasitemia and tissue parasitism but increased mortality. These results suggest the participation of a PD-1 signaling pathway in the control of acute myocarditis induced by T. cruzi and provide additional insight into the regulatory mechanisms in the pathogenesis of Chagas` disease.
Resumo:
Introduction: The present study evaluated the effect of a reducing agent on the bond strength of deproteinized root canal dentin surfaces when using a self-adhesive versus dual-cured cement. Regional differences were also evaluated. Methods: A total of 45 bovine incisor roots were divided into 3 groups: irrigation with physiologic solution (control), 10-minute deproteinization with 5% NaOCl, and 10-minute deproteinization with 5% NaOCl followed by 10 minutes of 10% ascorbic acid. Fiber posts were cemented with either RelyX 0100 or RelyX ARC (with SingleBond 2 or Clearfil SE Bond). The push-out bond strength was evaluated after 24 hours of storage. Data were submitted to three-way analyses of variance and Dunnett 13 tests (alpha = 0.05). Results: No differences between cements were observed within the testing conditions, regardless of the adhesive (P < .05). Deproteinization reduced bond strengths. Subsequent treatment with ascorbic acid was capable of reversing bond strength value changes to levels similar to those of controls. Regional radicular differences were also found, where coronal > middle > apical. Conclusions: The reducing agent was capable. of reversing the effect of dentin deproteinization, and RelyX U100 behaved similarly to RelyX ARC. (J Endod 2010;36:130-134)
Resumo:
A secretory surge of prolactin occurs on the afternoon of oestrous in cycling rats. Although prolactin is regulated by ovarian steroids, plasma oestradiol and progesterone levels do not vary during oestrous. Because prolactin release is tonically inhibited by hypothalamic dopamine and modulated by dopamine transmission in the preoptic area (POA), the present study aimed to evaluate whether oestrogen receptor (ER)-alpha and progestin receptor (PR) expression in the dopaminergic neurones of arcuate (ARC), periventricular, anteroventral periventricular (AVPe) and ventromedial preoptic (VMPO) nuclei changes during the day of oestrous. Cycling rats were perfused every 2 h from 10-20 h on oestrous. Brain sections were double-labelled to ER alpha or PR and tyrosine hydroxylase (TH). The number of TH-immunoreactive (ir) neurones did not vary significantly in any area evaluated. ER alpha expression in TH-ir neurones increased at 14 and 16 h in the rostral-ARC and dorsomedial-ARC, 14 h in the caudal-ARC and 16 h in the VMPO, whereas it was unaltered in the ventrolateral-ARC, periventricular and AVPe. PR expression in TH-ir neurones of the periventricular and rostral, dorsomedial, ventrolateral and caudal-ARC decreased transitorily during the afternoon, showing the lowest levels between 14 and 16 h; but it did not vary in the AVPe and VMPO. Plasma oestradiol and progesterone concentrations were low and unaltered during oestrous, indicating that the changes in receptors expression were probably not due to variation in ligand levels. Thus, our data suggest that variations in ER alpha and PR expression may promote changes in the activity of medial basal hypothalamus and POA dopaminergic neurones, even under unaltered secretion of ovarian steroids, which could facilitate the occurrence and modulate the magnitude of the prolactin surge on oestrous.
Resumo:
Pregnant women are particularly susceptible to toxic effects associated with lead (Pb) exposure. Pb accumulates in bone tissue and is rapidly mobilized from bones during pregnancy, thus resulting in fetal contamination. While vitamin D receptor (VDR) polymorphisms modify bone mineralization and affect Pb biomarkers including blood (Pb-B) and serum (Pb-S) Pb concentrations, and %Pb-S/Pb-B ratio, the effects of these polymorphisms on Pb levels in pregnant women are unknown. This study aimed at examining the effects of three (Fokl, Bsml and Apal) VDR polymorphisms (and VDR haplotypes) on Pb levels in pregnant women. Pb-B and Pb-S were determined by inductively coupled plasma mass spectrometry in samples from 256 healthy pregnant women and their respective umbilical cords. Genotypes for the VDR polymorphisms were determined by PCR and restriction fragment length digestion. While the three VDR polymorphisms had no significant effects on Pb-B, Pb-S or %Pb-S/Pb-B ratio, the haplotype combining the f, a, and b alleles for the Fokl, Apal and Bsml polymorphisms, respectively, was associated with significantly lower Pb-S and %Pb-S/Pb-B (P<0.05). However, maternal VDR haplotypes had no effects on Pb levels in the umbilical cords. To our knowledge, this is the first study showing that a combination of genetic polymorphisms (haplotype) commonly found in the VDR gene affects Pb-S and %Pb-S/Pb-B ratios in pregnant women. These findings may have major implications for Pb toxicity because they may help to predict the existence of a group of subjects that is genetically less prone to Pb toxicity during pregnancy. (C) 2010 Elsevier B.V. All rights reserved.
The Effect of TAK-778 on Gene Expression of Osteoblastic Cells Is Mediated Through Estrogen Receptor
Resumo:
This study evaluated the effect of TAK-778 [(2R, 4S)-(-)-N-(4-diethoxyphosphorylmethylphenyl)-1,2,4,5-tetrahydro-4-methyl-7,8-methylenedioxy-5-oxo-3-benzothiepin-2-carboxamide)] on in vitro osteogenic events and on gene expression of osteoblastic cells derived from human alveolar bone and the participation of estrogen receptors (ERs) on such effect. Osteoblastic cells were subcultured, with or without TAK-778 (10(-5) M), to evaluate cell growth and viability, total protein content, and alkaline phosphatase (ALP) activity at 7, 14, and 21 days; bone-like formation at 21 days; and gene expression, using cDNA microarray, at 7 days. Also, osteoblastic cells were exposed to TAK-778 (10-5 M) combined to ICI182,780, a nonspecific ER antagonist (10(-6) M), and gene expression was evaluated by real-time polymerase chain reaction (PCR) at 7 days. TAK-778 induced a reduction in culture growth and an increase in cell synthesis, ALP activity, and bone-like formation. The cDNA microarray showed genes associated with cell adhesion and differentiation, skeletal development, ossification, and transforming growth factor-P receptor signaling pathway, with a tendency to be higher expressed in cells exposed to TAK-778. The gene expression of ALP, osteocalcin, Msh homeobox 2, receptor activator of NF-kappa B ligand, and intercellular adhesion molecule 1 was increased by TAK-778 as demonstrated by real-time PCR, and this effect was antagonized by ICI182,780. The present results demonstrated that TAK-778 acts at a transcriptional level to enhance the in vitro osteogenic process and that its effect on gene expression of osteoblastic cells is mediated, at least partially, through ERs. Based on these findings, TAK-778 could be considered in the treatment of bone metabolic disorders. Exp Biol Med 234:190-199, 2009
Resumo:
This study investigated whether sodium bicarbonate solution, applied on enamel previously exposed to a simulated intrinsic acid, can control dental erosion. Volunteers wore palatal devices containing enamel slabs, which were exposed twice daily extra-orally to hydrochloric acid (0.01 M, pH 2) for 2 min. Immediately afterwards, the palatal devices were re-inserted in the mouth and volunteers rinsed their oral cavity with a sodium bicarbonate solution or deionized water for 60 s. After the washout period, the palatal devices were refilled with a new set of specimens and participants were crossed over to receive the alternate rinse solution. The surface loss and surface microhardness (SMH) of specimens were assessed. The surface loss of eroded enamel rinsed with a sodium bicarbonate solution was significantly lower than the surface loss of eroded enamel rinsed with deionized water. There were no differences between treatments with sodium bicarbonate and deionized water for SMH measurements. Regardless of the solution used as an oral rinse, eroded enamel showed lower SMH than uneroded specimens. Rinsing with a sodium bicarbonate solution after simulated endogenous erosive challenge controlled enamel surface loss but did not alter the microhardness.