165 resultados para metallurgy residue


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The processes that govern the rate of particle recovery in a flotation cell include the following sub-processes: collision, attachment, and stability of the aggregate formed by particles and bubbles. Collision is controlled by bulk hydrodynamics inside the flotation cell, while attachment is largely dominated by variables that belong to the domain of surface chemistry (contact angle, induction time). As for the stability of the particle/bubble aggregate, its efficiency depends on both hydrodynamics plus surface chemistry variables of the system. The flotation recovery of coarse particles of apatite and glass spheres was measured by micro-flotation and batch flotation tests in which hydrodynamic parameters were evaluated, such as impeller rotational speed, diameter, and geometry, as well as particle size and density. Results revealed that a proper impeller rotational speed yielded turbulence levels, which enabled to keep particles fully suspended, this way optimizing the collision efficiency between particles and bubbles, without jeopardizing the stability of the particle-bubble aggregates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to investigate the respiratory protective device selection process and to identify changes in this process when an exposure limit value is updated. Two previous studies conducted in mining industries in the metropolitan area of Sao Paulo were put through the respiratory protective device selection process. The protection factors of the equipment provided by the companies were compared with the required protection factors and with the FUNDACENTRO`s respiratory protection program. The results showed that until 2005, some companies were providing inadequate protection, and after the change in crystalline silica exposure limit value in 2006, all the analyzed companies were providing inadequate respirators. This study suggests that there is an opportunity to create a web portal, where the selection process can be done by the companies with updated information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the human being`s basic needs is housing. In Brazil, the basic element for this is concrete, artificial stone, which demands a great amount of aggregates, such as sand and gravel. The sand and rocks are abundant in nature and gravel can be produced at low cost. However, transportation to the area of product utilization can be an incremental factor in the final cost logistics. Both sand and gravel have expressive price variations, which are not necessarily related to mining activities, but to logistic activities, mainly their distribution. Restrictive measures adopted in large urban centers, such as prohibition of hauling trucks in certain areas or during certain hours, alternate license plate end number system (even number plate ending can circulate on even-numbered days and visa versa), and axle-control, generate a need for a larger and more diversified fleet, not to mention more employees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the previously described method for appearance function determination, described in Part I of this article, the breakage characterization of the main Carajas ore types was carried out. Based on such characteristics, the ball mill circuit performance was evaluated through simulations. The model described in the first part was used. The results were assessed by comparing ball mill products and cyclone overflow size distribution, as well as simulated recirculating loads. The simulations indicated the potential for processing such ore types at the Carajas grinding circuit, which until now was unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mine simulation depends on data that is both coherent and representative of the mining operation. This paper describes a methodology for modeling operational data which has been developed for mine simulation. The methodology has been applied to a case study of an open-pit mine, where the cycle times of the truck fleet have been modeled for mine simulation purposes. The results obtained have shown that once the operational data has been treated using the proposed methodology, the system variables have proven to be adherent to theoretical distributions. The research indicated the need jar tracking the origin of data inconsistencies through the development of a process to manage inconsistent data from the mining operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tungsten carbide has a wide range of applications, mainly cemented carbides made of WC and Co, as wear resistant materials. However, the high cost of WC-Co powders encourages the use of a substrate to manufacture a functionally graded material (FGM) tool made of WC-Co and a tool steel. These materials join the high wear resistance of the cemented carbide and the toughness of the steel. This work deals with the study interaction of the WC-Co and H13 steel to design a functionally graded material by means of spark plasma sintering (SPS). The SPS, a novel sintering technique reaching the consolidation of the powders at relatively low temperatures and short dwell times, is a promising technique in processing materials. In this study, WC, H13 steel, WC-Co, WC-H13 steel and WC-Co-H13 steel bulk samples were investigated using scanning electron microscopy and X-ray diffraction techniques to evaluate the phase transformations involved during SPS consolidation process. The W(2)C and W(3)Fe(3)C precipitation were identified after the SPS consolidation of the WC and WC-H13 steel samples, respectively. The precipitation Of W(4)Co(2)C was also identified in the WC-Co and WC-Co-H13 steel samples. The WC-H 13 steel and WC-Co-H13 steel were also evaluated after heat treatments at 1100 degrees C for 9 h, which enhanced the chemical interaction and the precipitation of W(3)Fe(3)C and W(4)Co(2)C, respectively. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Welded equipment for cryogenic applications is utilized in chemical, petrochemical, and metallurgical industries. One material suitable for cryogenic application is austenitic stainless steel, which usually doesn`t present ductile/brittle transition temperature, except in the weld metal, where the presence of ferrite and micro inclusions can promote a brittle failure, either by ferrite cleavage or dimple nucleation and growth, respectively. A 25-mm- (1-in.-) thick AISI 304 stainless steel base metal was welded with the SAW process using a 308L solid wire and two kinds of fluxes and constant voltage power sources with two types of electrical outputs: direct current electrode positive and balanced square wave alternating current. The welded joints were analyzed by chemical composition, microstructure characterization, room temperature mechanical properties, and CVN impact test at -100 degrees C (-73 degrees F). Results showed that an increase of chromium and nickel content was observed in all weld beads compared to base metal. The chromium and nickel equivalents ratio for the weld beads were always higher for welding with square wave AC for the two types of fluxes than for direct current. The modification in the Cr(eq)/Ni(eq) ratio changes the delta ferrite morphology and, consequently, modifies the weld bead toughness at lower temperatures. The oxygen content can also affect the toughness in the weld bead. The highest absorbed energy in a CVN impact test was obtained for the welding condition with square wave AC electrical output and neutral flux, followed by DC(+) electrical output and neutral flux, and square wave AC electrical output and alloyed flux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminum white dross is a valuable material principally due to its high metallic aluminum content. The aim of this work is to develop a method for quantitative analysis of aluminum white dross with high accuracy. Initially, the material was separated into four granulometric fractions by means of screening. Two samples of each fraction were obtained, which were analyzed by means of X-ray fluorescence and energy dispersive spectroscopy in order to determine the elements present in the samples. The crystalline phases aluminum, corundum, spinel, defect spinel, diaoyudaoite, aluminum nitride, silicon and quartz low were identified by X-ray diffraction. The quantitative phase analysis was performed by fitting the X-ray diffraction profile with the Rietveld method using the GSAS software. The following quantitative results were found: 77.8% aluminum, 7.3% corundum, 2.6% spinel, 7.6% defect spinel, 1.8% diaoyudaoite, 2.9% aluminum nitride, and values not significant of quartz and silicon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work studied the electrochemical behavior of a solution treated or 550 degrees C aged Cu10Ni-3Al-1.3Fe alloy, in 0.01 M NaCl aqueous solution, through potentiodynamic polarization in both stagnant condition or under erosion process. Results showed the occurrence of a passivity break potential (E(pb)), related to the beginning of the denickelification process, which occurred as a localized attack under stagnant electrolyte. Under erosion conditions localized denickelification was not observed, despite of the presence of E(pb). This could indicate that selective corrosion of Ni, which caused the observed E(pb), occurred as a dissolution-redeposition process, with removal of the Cu deposits during erosion process. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of different microstructures on the polarization resistance (Rp) and the hydrogen-induced cracking (HIC) of a micro-alloyed steel austenitized and submitted to different cooling rates was studied. Samples 19.1 x 6 x 2 mm, containing the whole thickness of the plate were extracted from a 20 mm plate and heat treated on a quenching dilatometer, were submitted to Rp and HIC corrosion tests. Both Rp and HIC tests followed as close as possible ASTM G59 and NACE standard TM0284-2003, in this case, modified only with regard to the size of the samples. Steel samples transformed from austenite by a slow cooling (cooling rate of 0.5 degrees C.s(-1)) showed higher susceptibility to hydrogen-induced cracking, with large cracks in the middle of the sample propagating along segregation bands, corresponding to the centerline of the plate thickness. For cooling rates of 10 degrees C.s(-1), only small cracks were found in the matrix and micro cracks nucleated at non-metallic inclusions. For higher cooling rates (40 degrees C.s(-1)) very few small cracks were detected, linked to non-metallic inclusions. This result suggests that structures formed by polygonal structures and segregation bands (were cutectoid microconstituents predominate) have higher susceptibility to HIC. Structures predominantly formed by acicular ferrite make it difficult to propagate the cracks among non-oriented and interlaced acicular ferrite crystals. Smaller segregation bands containing eutectoid products also help inhibit cracking and crack propagation; segregation bands can function as pipelines for hydrogen diffusion and offer a path of stress concentration for the propagation of cracks, frequently associated to non-metallic inclusions. Polarization resistance essays performed on the steel in theas received condition, prior to any heat treatment, showed larger differences between the regions of the plate, with a considerably lower Rp in the centerline. The austenitization heat treatments followed by cooling rates of 0.5 e 10 degrees C.s(-1) made more uniform the corrosion resistance along the thickness of the plate. The effects of heat treatments on the corrosion resistance are probably related to the microconstituent formed, allied to the chemical homogenization of the impurities concentrated on the centerline of the plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alpha prime formation leads to material embrittlement and deterioration of corrosion resistance. In the present study, the mechanical and corrosion behavior of super duplex stainless steel UNS S32520 aged at 475 degrees C from 0.5 h to 1,032 h was evaluated using microhardness measurements, Charpy impact tests, electrochemical impedance spectroscopy, and cyclic polarization curves. The sensibility of these tests to the effects of alpha prime phase was investigated. The microhardness test showed a gradual increase in hardness with aging time, whereas the impact tests revealed losses of about 80% in the energy absorption capacity for the material aged for 12 h in comparison with the solution-annealed samples. The most responsive analysis was the impact test, which indirectly revealed the presence of this deleterious phase in samples aged for 0.5 h. The electrochemical impedance spectroscopy and polarization tests were not highly sensitive to the alpha prime phase unless these are present in large amounts in the stainless steel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technology of self-reducing pellets for ferro-alloys production is becoming an emerging process due to the lower electric energy consumption and the improvement of metal recovery in comparison with the traditional process. This paper presents the effects of reduction temperature, addition of ferro-silicon and addition of slag forming agents for the production of high carbon ferro-chromium by utilization of self-reducing pellets. These pellets were composed of Brazilian chromium ore (chromite) concentrate, petroleum coke, Portland cement, ferro-silicon and slag forming components (silica and hydrated lime). The pellets were processed at 1 773 K, 1 823 K and 1 873 K using an induction furnace. The products obtained, containing slag and metallic phases, were analyzed by scanning electron microscopy and chemical analyses (XEDS). A large effect on the reduction time was observed by increasing the temperature from 1 773 K to 1 823 K for pellets without Fe-Si addition: around 4 times faster at 1 823 K than at 1 773 K for reaction fraction close to one. However, when the temperature was further increased from 1 823 K to 1 873 K the kinetics improved by double. At 1 773 K, the addition of 2% of ferro-silicon in the pellet resulted in an increasing reaction rate of around 6 times, in comparison with agglomerate without it. The addition of fluxing agents (silica and lime), which form initial slag before the reduction is completed, impaired the full reduction. These pellets became less porous after the reduction process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of this work is to investigate the reduction of chromium from a quaternary slag by carbon dissolved in liquid steel. Laboratory scale experiments were conducted to study the reduction of chromium oxides in the slag by carbon dissolved in the melt. These experiments were made under different conditions of slag basicity and amount of added carbon. Thermodynamic calculations based on Double Sublattice model were applied using the commercial software Thermo-Calc, with the IRSID database. The results obtained showed good correlation with practical and calculated results, making it possible to predict equilibrium conditions of the system and to determine the activities of chromium oxides in the slag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of Cr and N in a high-temperature gas-nitrided stainless steel was measured by using a scanning electron microscope-coupled wavelength-dispersive X-ray spectrometer and the results were related to the microhardness profile of the hardened case. The experimental spectrometric procedure was optimized to consistently measure N contents varying between 0.1 and 0.8 wt.% in martensite and between 18.3 and 21.6 wt.% in nitrides, as well as Cr contents ranging from 11.5 to 17.0 wt.%. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to study the reaction rate and the morphology of intermediate reaction products during iron ore reduction when iron ore and carbonaceous materials are agglomerated together with or without Portland cement. The reaction was performed at high temperatures, and used small size samples in order to minimise heat transfer constraints. Coke breeze and pure graphite were the carbonaceous materials employed. Portland cement was applied as a binder, and pellet diameters were in the range 5.6-6.5 mm. The experimental technique involved the measurement of the pellet weight loss, as well as the interruption of the reaction at different stages, in order to submit the partially reduced pellet to scanning electron microscopy. The experimental temperature was in the range 1423-1623 K, and the total reaction time varied from 240 to 1200 s. It was observed that above 1523 K the formation of liquid slag occurred inside the pellets, which partially dissolved iron oxides. The apparent activation energies obtained were 255 kJ mol(-1) for coke breeze containing pellets, and 230 kJ mol(-1) for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.