120 resultados para macroscopic traffic flow models
Resumo:
In this paper we argue that the effects of irregular chaotic motion of particles transported by blood can play a major role in the development of serious circulatory diseases. Vessel wall irregularities modify the flow field, changing in a nontrivial way the transport and activation of biochemically active particles. We argue that blood particle transport is often chaotic in realistic physiological conditions. We also argue that this chaotic behavior of the flow has crucial consequences for the dynamics of important processes in the blood, such as the activation of platelets which are involved in the thrombus formation.
Resumo:
Large-scale cortical networks exhibit characteristic topological properties that shape communication between brain regions and global cortical dynamics. Analysis of complex networks allows the description of connectedness, distance, clustering, and centrality that reveal different aspects of how the network's nodes communicate. Here, we focus on a novel analysis of complex walks in a series of mammalian cortical networks that model potential dynamics of information flow between individual brain regions. We introduce two new measures called absorption and driftness. Absorption is the average length of random walks between any two nodes, and takes into account all paths that may diffuse activity throughout the network. Driftness is the ratio between absorption and the corresponding shortest path length. For a given node of the network, we also define four related measurements, namely in-and out-absorption as well as in-and out-driftness, as the averages of the corresponding measures from all nodes to that node, and from that node to all nodes, respectively. We find that the cat thalamo-cortical system incorporates features of two classic network topologies, Erdos-Renyi graphs with respect to in-absorption and in-driftness, and configuration models with respect to out-absorption and out-driftness. Moreover, taken together these four measures separate the network nodes based on broad functional roles (visual, auditory, somatomotor, and frontolimbic).
Resumo:
In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches.
Resumo:
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma(tau)=3/2). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma(tau)=1.780 +/- 0.005.
Resumo:
In this work, we report a systematic investigation of upconversion losses and their effects on fluorescence quantum efficiency and fractional thermal loading in Nd(3+)-doped fluoride glasses. The energy transfer upconversion (gamma(up)) parameter, which describes upconversion losses, was experimentally determined using different methods: thermal lens (TL) technique and steady state luminescence (SSL) measurements. Additionally, the upconversion parameter was also obtained from energy transfer models and excited state absorption measurements. The results reveal that the microscopic treatment provided by the energy transfer models is similar to the macroscopic ones achieved from the TL and SSL measurements because similar gamma(up) parameters were obtained. Besides, the achieved results also point out the migration-assisted energy transfer according to diffusion-limited regime rather than hopping regime as responsible for the upconversion losses in Nd-doped glasses. (c) 2008 American Institute of Physics.
Resumo:
The structure of laser glasses in the system (Y(2)O(3))(0.2){(Al(2)O(3))(x))(B(2)O(3))(0.8-x)} (0.15 <= x <= 0.40) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as electron spin echo envelope modulation (ESEEM) of Yb-doped samples. The latter technique has been applied for the first time to an aluminoborate glass system. (11)B magic-angle spinning (MAS)-NMR spectra reveal that, while the majority of the boron atoms are three-coordinated over the entire composition region, the fraction of three-coordinated boron atoms increases significantly with increasing x. Charge balance considerations as well as (11)B NMR lineshape analyses suggest that the dominant borate species are predominantly singly charged metaborate (BO(2/2)O(-)), doubly charged pyroborate (BO(1/2)(O(-))(2)), and (at x = 0.40) triply charged orthoborate groups. As x increases along this series, the average anionic charge per trigonal borate group increases from 1.38 to 2.91. (27)Al MAS-NMR spectra show that the alumina species are present in the coordination states four, five and six, and the fraction of four-coordinated Al increases markedly with increasing x. All of the Al coordination states are in intimate contact with both the three-and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, non-segregated glass structure. (89)Y solid state NMR spectra show a significant chemical shift trend, reflecting that the second coordination sphere becomes increasingly ""aluminate-like'' with increasing x. This conclusion is supported by electron spin echo envelope modulation (ESEEM) data of Yb-doped glasses, which indicate that both borate and aluminate species participate in the medium range structure of the rare-earth ions, consistent with a random spatial distribution of the glass components.
Resumo:
Background: Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown. Methodology/Principal Findings: We characterized extracellular vesicle production in wild type (WT) and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB) formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex) or MVB functionality (vps23, late endosomal trafficking) revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells. Conclusions/Significance: Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the complexity of this process in the biology of yeast cells.
Resumo:
The variability of the meridional overturning circulation (MOC) in the upper tropical Atlantic basin is investigated using a reduced-gravity model in a simplified domain. Four sets of idealized numerical experiments are performed: (i) switch-on of the MOC until a fixed value when a constant northward flow is applied along the western boundary; (ii) MOC with a variable flow; (iii) MOC in a quasi-steady flow; and (iv) shutdown of the MOC in the Northern Hemisphere. Results from experiments (i) show that eddies are generated at the equatorial region by shear instability and detached northward; eddies are responsible for an enhancement of the mean flow and the variability of the MOC. Results from experiments (ii) show a transitional behavior of the MOC related to the eddy generation in interannual-decadal time scales as the Reynolds number varies due to the variations in the MOC. In experiments (iii), a critical Reynolds number Re(c) around 30 is found, above which eddies are generated. Experiments (iv) demonstrate that even after the collapse of MOC in the Northern Hemisphere, eddies can still be generated and carry energy across the equator into the Northern Hemisphere; these eddies act to attenuate the impact of the MOC shutdown on short time scales. The results described here may be particularly pertinent to ocean general circulation models in which the Reynolds number lies close to the bifurcation point separating the laminar and turbulent regimes.
Resumo:
This work describes the coupling of a biomimetic sensor to a flow injection system for the sensitive determination of paracetamol. The sensor was prepared as previously described in the literature (M. D. P. T. Sotomayor, A. Sigoli, M. R. V. Lanza, A. A. Tanaka and L. T. Kubota, J. Braz. Chem. Soc., 2008, 19, 734) by modifying a glassy carbon electrode surface with a Nafion (R) membrane doped with iron tetrapyridinoporphyrazine (FeTPyPz), a biomimetic catalyst of the P450 enzyme. The performance of the sensor for paracetamol detection was investigated and optimized in a flow injection system (FIA) using a wall jet electrochemical cell. Under optimized conditions a wide linear response range (1.0 x 10(-5) to 5.0 x 10(-2) mol L(-1)) was obtained, with a sensitivity of 2579 (+/- 129) mu A L mu mol(-1). The detection and quantification limits of the sensor for paracetamol in the FIA system were 1.0 and 3.5 mu mol L(-1), respectively. The analytical frequency was 51 samples h(-1), and over a period of five days (320 determinations) the biosensor maintained practically the same response. The system was successfully applied to paracetamol quantification in seven pharmaceutical formulations and in water samples from six rivers in Sao Paulo State, Brazil.
Resumo:
Measurements based on absorption, reflectance, or luminescence of molecular species or complex ions can be carried out directly on a solid support simultaneously to the retention of the analyte. The use of this strategy in flow-based systems is advantageous in view of the reproducible handling of solutions in retention and elution steps of the analyte. This approach can be exploited to increase sensitivity, minimize reagent consumption as well as waste generation, improve selectivity or for simultaneous determination based on selective retention or differences in sorption rates of the analytes. This review focuses on the main characteristics of direct solid-phase measurements in flow systems, including the discussion of advantages and limitations and practical guidelines to the successful implementation of this approach. Selected applications in diverse fields, such as pharmaceutical, food, and environmental analysis are discussed.
Resumo:
A flow system designed with solenoid micro-pumps is proposed for fast and greener spectrophotometric determination of free glycerol in biodiesel. Glycerol was extracted from samples without using organic solvents. The determination involves glycerol oxidation by periodate, yielding formaldehyde followed by formation of the colored (3,5-diacetil-1,4-dihidrolutidine) product upon reaction with acetylacetone. The coefficient of variation, sampling rate and detection limit were estimated as 1.5% (20.0 mg L(-1) glycerol, n =10), 34 h(-1), and 1.0 mg L(-1) (99.7% confidence level), respectively. A linear response was observed from 5 to 50 mg L(-1), with reagent consumption estimated as 345 mu g of KIO(4) and 15 mg of acetylacetone per determination. The procedure was successfully applied to the analysis of biodiesel samples and the results agreed with the batch reference method at the 95% confidence level. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A green and highly sensitive analytical procedure was developed for the determination of free chlorine in natural waters, based on the reaction with N,N-diethyl-p-phenylenediamine (DPD). The flow system was designed with solenoid micro-pumps in order to improve mixing conditions by pulsed flows and to minimize reagent consumption as well as waste generation. A 100-cm optical path flow cell based on a liquid core waveguide was employed to increase sensitivity. A linear response was observed within the range 10.0 to 100.0 mu g L(-1), with the detection limit, coefficient of variation and sampling rate estimated as 6.8 mu g (99.7% confidence level), 0.9% (n = 20) and 60 determinations per hour, respectively. The consumption of the most toxic reagent (DPD) was reduced 20,000-fold and 30-fold in comparison to the batch method and flow injection with continuous reagent addition, respectively. The results for natural and tap water samples agreed with those obtained by the reference batch spectrophotometric procedure at the 95% confidence level. (C) 2010 Elsevier By. All rights reserved.
Resumo:
The exploitation of aqueous biphasic extraction is proposed for the first time in flow analysis This extraction strategy stands out for being environmentally attractive since it is based in the utilization of two immiscible phases that are intrinsically aqueous The organic solvents of the traditional liquid-liquid extractions ale no longer used, being replaced by non-toxic, non-flammable and non-volatile ones. A single interface flow analysis (SIFA) system was implemented to carry out the extraction process due to its favourable operational characteristics that include the high automation level and simplicity of operation, the establishment of a dynamic interface where the mass transfer occurred between the two immiscible aqueous phases, and the versatile control over the extraction process namely the extraction time The application selected to demonstrate the feasibility of SIFA to perform this aqueous biphasic extraction was the pre-concentration of lead. After extraction, lead reacted with 8-hydroxyquinoline-5-sulfonic acid and the resulting product was determined by a fluorimetric detector included in the flow manifold. Therefore, the SIFA single interface was used both as extraction (enrichment) and reaction interface. (C) 2010 Elsevier B.V All rights reserved.
Resumo:
In this work a downscaled multicommuted flow injection analysis setup for photometric determination is described. The setup consists of a flow system module and a LED based photometer, with a total internal volume of about 170 mu L The system was tested by developing an analytical procedure for the photometric determination of iodate in table salt using N,N-diethyl-henylenediamine (DPD) as the chromogenic reagent. Accuracy was accessed by applying the paired r-test between results obtained using the proposed procedure and a reference method, and no significant difference at the 95% confidence level was observed. Other profitable features, such as a low reagent consumption of 7.3 mu g DPD per determination: a linear response ranging from 0.1 up to 3.0 m IO(3)(-), a relative standard deviation of 0.9% (n = 11) for samples containing 0.5 m IO(3)(-), a detection limit of 17 mu g L(-1) IO(3)(-), a sampling throughput of 117 determination per hour, and a waste generation 600 mu L per determination, were also achieved. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An environmentally friendly analytical procedure with high sensitivity for determination of carbaryl pesticide in natural waters was developed. The flow system was designed with solenoid micro-pumps in order to improve mixing conditions and minimize reagent consumption as well as waste generation. A long pathlength (100 cm) flow cell based on a liquid core waveguide (LCW) was employed to increase the sensitivity in detection of the indophenol formed from the reaction between carbaryl and p-aminophenol (PAP). A clean-up step based on cloud-point extraction was explored to remove the interfering organic matter, avoiding the use of toxic organic solvents. A linear response was observed within the range 5-200 mu g L(-1) and the detection limit, coefficient of variation and sampling rate were estimated as 1.7 mu g L(-1) (99.7% confidence level), 0.7% (n=20) and 55 determinations per hour, respectively. The reagents consumption was 1.9 mu g of PAP and 5.7 mu g of potassium metaperiodate, with volume of 2.6 mL of effluent per determination. The proposed procedure was selective for the determination of carbaryl, without interference from other carbamate pesticides. Recoveries within 84% and 104% were estimated for carbaryl spiked to water samples and the results obtained were also in agreement with those found by a batch spectrophotometric procedure at the 95% confidence level. The waste of the analytical procedure was treated with potassium persulphate and ultraviolet irradiation, yielding a colorless residue and a decrease of 94% of total organic carbon. In addition, the residue after treatment was not toxic for Vibrio fischeri bacteria. (c) 2010 Elsevier B.V. All rights reserved.