222 resultados para infralimbic cortex


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serotonin (5-HT) plays a key role in the neural circuitry mediating unconditioned and conditioned fear responses related to panic and generalized anxiety disorders. The basolateral nucleus of the amygdala (BLA) and the dorsal periaqueductal gray (dPAG) appear to be mainly involved in these conditions. The aim of this study was to measure the extracellular level of 5-HT and its metabolite 5-hydroxyindolacetic acid (5-HIAA) in the BLA and dPAG during unconditioned and conditioned fear states using in vivo microdialysis procedure. Thus, for the unconditioned fear test, animals were chemically stimulated in the dPAG with semicarbazide, an inhibitor of the gamma-aminobutyric acid-synthesizing enzyme glutamic acid decarboxylase. For the conditioned fear test, animals were subjected to a contextual conditioned fear paradigm using electrical footshock as the unconditioned stimulus. The results show that the 5-HT and 5-HIAA level in the BLA and dPAG did not change during unconditioned fear, whereas 5-HT concentration, but not 5-HIAA concentration, increased in these brain areas during conditioned fear. The present study showed that the 5-HT system was activated during conditioned fear, whereas it remained unchanged during unconditioned fear, supporting the hypothesis that 5-HT has distinct roles in conditioned and unconditioned fear (dual role of 5-HT in anxiety disorders). (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mice show urinary scent marking behavior as a form of social communication. Marking to a conspecific stimulus mouse or odor varies with stimulus familiarity, indicating discrimination of novel and familiar animals. This study investigated Fos immunoreactivity in inbred C57BL/6J (C57) males following scent marking behavior in response to detection of a social stimulus, or discrimination between a familiar and an unfamiliar conspecific. In Experiment 1 C57 mice were exposed for four daily trials to an empty chamber; on a test day they were exposed to the same chamber or to a male CD-1 mouse in that chamber. Increased scent marking to the CD-1 mouse was associated with increased Fos-immunoreactive cells in the basolateral amygdala, medial amygdala, and dorsal and ventral premammillary nuclei. In Experiment 2 C57 mice were habituated to a CD-1 male for 4 consecutive days and, on the 5th day, exposed to the same CD-1 male, or to a novel CD-1 male. Mice exposed to a novel CD-1 displayed a significant increase in scent marking compared to their last exposure to the familiar stimulus, indicating discrimination of the novelty of this social stimulus. Marking to the novel stimulus was associated with enhanced activation of several telencephalic, as well as hypothalamic and midbrain, structures in which activation had not been seen in the detection paradigm (Experiment 1). These included medial prefrontal and piriform cortices, and lateral septum; the paraventricular nuclei, ventromedial nuclei, and lateral area of the hypothalamus, and the ventrolateral column of the periaqueductal gray. These data suggest that a circumscribed group of structures largely concerned with olfaction is involved in detection of a conspecific olfactory stimulus, whereas discrimination of a novel vs. a familiar conspecific stimulus engages a wider range of forebrain structures encompassing higher-order processes and potentially providing an interface between cognitions and emotions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The involvement of dopamine (DA) mechanisms in the nucleus accumbens (NAC) in fear conditioning has been proposed by many studies that have challenged the view that the NAC is solely involved in the modulation of appetitive processes. However, the role of the core and shell subregions of the NAC in aversive conditioning remains unclear. The present study examined DA release in these NAC subregions using microdialysis during the expression of fear memory. Guide cannulae were implanted in rats in the NAC core and shell. Five days later, the animals received 10 footshocks (0.6 mA, 1 s duration) in a distinctive cage A (same context). On the next day, dialysis probes were inserted through the guide cannulae into the NAC core and shell subregions, and the animals were behaviorally tested for fear behavior either in the same context (cage A) or in a novel context (cage B). Dialysates were collected every 5 min for 90 min and analyzed by high-performance liquid chromatography. The rats exhibited a significant fear response in cage A but not in cage B. Moreover, increased DA levels in both NAC subregions were observed 5-25 min after the beginning of the test when the animals were tested in the same context compared with accumbal DA levels from rats tested in the different context. These findings Suggest that DA mechanisms in both the NAC core and shell may play an important role in the expression of contextual fear memory. (c) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Withdrawal from morphine leads to the appearance of extreme anxiety accompanied of several physical disturbances, most of them linked to the activation of brainstem regions such as the locus coeruleus, ventral tegmental area, hypothalamic nuclei and periaqueductal grey (PAG). As anxiety remains one of the main components of morphine withdrawal the present study aimed to evaluating the influence of the dorsal aspects of the PAG on the production of this state, since this structure is well-known to be involved in defensive behaviour elicited by anxiety-evoking stimuli. Different groups of animals were submitted to 10 days of i.p. morphine injections, challenged 2 h after with an i.p. injection of naloxone (0.1 mg/kg), and submitted to the plus-maze, open-field and light-dark transition tests. The effects of morphine withdrawal on anxiety-induced Fos immunolabelling were evaluated in four animals that passed by the light-dark transition test randomly chosen for Fos-protein analysis. Besides the PAG, Fos neural expression was conducted in other brain regions involved in the expression of anxiety-related behaviours. Our results showed that morphine withdrawn rats presented enhanced anxiety accompanied of few somatic symptoms. Increased Fos immunolabelling was noted in brain regions well-known to modulate these states as the prelimbic cortex, nucleus accumbens, amygdala and paraventricular hypothalamus. Increased Fos labelling was also observed in the ventral and dorsal aspects of the PAG, a region involved in anxiety-related processes suggesting that this region could be a common neural substrate enlisted during anxiety evoked by dangerous stimuli as well as those elicited by opiate withdrawal. (c) 2008 Elsevier Inc. All rights reserved,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sprague Dawley rats were submitted to bilateral ventral hippocampus lesions 7 days after birth. This corresponds to the Lipska and Weinberger`s procedure for modeling schizophrenia. The aim of the present work was to test the learning capacity of such rats with an associative Pavlovian and an instrumental learning paradigm, both methods using reward outcome (food, sucrose or polycose). The associative paradigm comprised also a second learning test with reversed learning contingencies. The instrumental conditioning comprised an extinction test under outcome devaluation conditions. Neonatally lesioned rats, once adults (over 60 days of age), showed a conditioning deficit in the associative paradigm but not in the instrumental one. Lesioned rats remained able to adapt as readily as controls to the reversed learning contingency and were as sensitive as controls to the devaluation of outcome. Such observations indicate that the active access (instrumental learning) to a reward could have compensated for the deficit observed under the ""passive"" stimulus-reward associative learning condition. This feature is compared to the memory management impairments observed in clinical patients. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia is a complex and heterogeneous psychiatric disorder. Auditory verbal hallucinations occur in 50-70% of patients with schizophrenia and are associated with significant distress, decreased quality of life and impaired social functioning. This study aimed to investigate the effects of active compared with sham 1-Hz repetitive transcranial magnetic stimulation (rTMS) applied to the left temporal-parietal cortex in patients with schizophrenia treated with clozapine. Symptom dimensions that were evaluated included general psychopathology, severity of auditory hallucinations, quality of life and functionality. Seventeen right-handed patients with refractory schizophrenia experiencing auditory verbal hallucinations and treated with clozapine were randomly allocated to receive either active rTMS or sham stimulation. A total of 384 min of rTMS was administered over 20 days using a double-masked, sham-controlled, parallel design. There was a significant reduction in Brief Psychiatric Rating Scale (BPRS) scores in the active group compared with the sham group. There was no significant difference between active and sham rTMS on Quality of Life Scale (QLS), Auditory Hallucinations Rating Scale (AHRS), Clinical Global Impressions (CGI) and functional assessment staging ( FAST) scores. Compared with sham stimulation, active rTMS of the left temporoparietal cortex in clozapine-treated patients showed a positive effect on general psychopathology. However, there was no effect on refractory auditory hallucinations. Further studies with larger sample sizes are needed to confirm these findings. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single session repetitive transcranial magnetic stimulation (rTMS) of the motor cortex (M1) is effective in the treatment of chronic pain patients but the analgesic effect of repeated sessions is still unknown We evaluated the effects of rTMS in patients with refractory pain due to complex regional pain syndrome (CRPS) type I Twenty three patients presenting CRPS type I of 1 upper limb were treated with the best medical treatment (analgesics and adjuvant medications physical therapy) plus 10 daily sessions of either real (r) or sham (s) 10Hz rTMS to the motor cortex (M1) Patients were assessed daily and after 1 week and 3 months after the last session using the Visual Analogical Scale (VAS) the McGill Pain Questionnaire (MPQ) the Health Survey 36 (SF 36) and the Hamilton Depression (HDRS) During treatment there was a significant reduction in the VAS scores favoring the r rTMS group mean reduction of 4 65 cm (50 9%) against 2 18 cm (24 7%) in the s rTMS group The highest reduction occurred at the tenth session and correlated to improvement in the affective and emotional subscores of the MPQ and SF 36 Real rTMS to the M1 produced analgesic effects and positive changes in affective aspects of pain in CRPS patients during the period of stimulation Perspective This study shows an efficacy of repetitive sessions of high frequency rTMS as an add on therapy to refractory CAPS type I patients It had a positive effect in different aspects of pain (sensory discriminative and emotional affective) It opens the perspective for the clinical use of this technique (C) 2010 by the American Pain Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed to elucidate electrophysiological and cortical mechanisms involved in anticipatory actions when 23 healthy right-handed subjects had to catch a free falling object by qEEG gamma-band (30-100 Hz). It is involved in cognitive processes, memory, spatial/temporal and proprioceptive factors. Our hypothesis is that an increase in gamma coherence in frontal areas will be observed during moment preceding ball drop, due to their involvement in attention, planning, selection of movements, preparation and voluntary control of action and in central areas during moment after ball drop, due to their involvement in motor preparation, perception and execution of movement. However, through a paired t-test, we found an increase in gamma coherence for F3-F4 electrode pair during moment preceding ball drop and confirmed our hypothesis for C3-C4 electrode pair. We conclude that gamma plays an important role in reflecting binding of several brain areas in a complex motor task as observed in our results. Moreover, for selection of movements, preparation and voluntary control of action, motor preparation, perception and execution of movement, the integration of somatosensory and visual information is mandatory. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Despite significant advancements in psychopharmacology, treating major depressive disorder (MDD) is still a challenge considering the efficacy, tolerability, safety, and economical costs of most antidepressant drugs. One approach that has been increasingly investigated is modulation of cortical activity with tools of non-invasive brain stimulation - such as transcranial magnetic stimulation and transcranial direct current stimulation (tDCS). Due to its profile, tDCS seems to be a safe and affordable approach. Methods and design: The SELECT TDCS trial aims to compare sertraline vs. tDCS in a double-blinded, randomized, factorial trial enrolling 120 participants to be allocated to four groups to receive sertraline + tDCS, sertraline, tDCS or placebo. Eligibility criteria are moderate-to-severe unipolar depression (Hamilton Depression Rating Scale >17) not currently on sertraline treatment. Treatment will last 6 weeks and the primary outcome is depression change in the Montgomery-Asberg Depression Rating Score (MADRS). Potential biological markers that mediate response, such as BDNF serum levels, Val66Met BDNF polymorphism, and heart rate variability will also be examined. A neuropsychological battery with a focus on executive functioning will be administered. Discussion: With this design we will be able to investigate whether tDCS is more effective than placebo in a sample of patients free of antidepressants and in addition, we will be able to secondarily compare the effect sizes of sertraline vs. tDCS and also the comparison between tDCS and combination of tDCS and sertraline. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous magnetic resonance imaging (MRI) studies described consistent age-related gray matter (GM) reductions in the fronto-parietal neocortex, insula and cerebellum in elderly subjects, but not as frequently in limbic/paralimbic structures. However, it is unclear whether such features are already present during earlier stages of adulthood, and if age-related GM changes may follow non-linear patterns at such age range. This voxel-based morphometry study investigated the relationship between GM volumes and age specifically during non-elderly life (18-50 years) in 89 healthy individuals (48 males and 41 females). Voxelwise analyses showed significant (p < 0.05, corrected) negative correlations in the right prefrontal cortex and left cerebellum, and positive correlations (indicating lack of GM loss) in the medial temporal region, cingulate gyrus, insula and temporal neocortex. Analyses using ROI masks showed that age-related dorsolateral prefrontal volume decrements followed non-linear patterns, and were less prominent in females compared to males at this age range. These findings further support for the notion of a heterogeneous and asynchronous pattern of age-related brain morphometric changes, with region-specific non-linear features. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single ""representative"" time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI. (c) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among nonmotor symptoms observed in Parkinson`s disease (PD) dysfunction in the visual system, including hallucinations, has a significant impact in their quality of life. To further explore the visual system in PD patients we designed two fMRI experiments comparing 18 healthy volunteers with 16 PD patients without visual complaints in two visual fMRI paradigms: the flickering checkerboard task and a facial perception paradigm. PD patients displayed a decreased activity in the primary visual cortex (Broadmann area 17) bilaterally as compared to healthy volunteers during flickering checkerboard task and increased activity in fusiform gyms (Broadmann area 37) during facial perception paradigm. Our findings confirm the notion that PD patients show significant changes in the visual cortex system even before the visual symptoms are clinically evident. Further studies are necessary to evaluate the contribution of these abnormalities to the development visual symptoms in PD. (C) 2010 Movement Disorder Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) aims to disentangle the description of brain processes by exploiting the advantages of each technique. Most studies in this field focus on exploring the relationships between fMRI signals and the power spectrum at some specific frequency bands (alpha, beta, etc.). On the other hand, brain mapping of EEG signals (e.g., interictal spikes in epileptic patients) usually assumes an haemodynamic response function for a parametric analysis applying the GLM, as a rough approximation. The integration of the information provided by the high spatial resolution of MR images and the high temporal resolution of EEG may be improved by referencing them by transfer functions, which allows the identification of neural driven areas without strong assumptions about haemodynamic response shapes or brain haemodynamic`s homogeneity. The difference on sampling rate is the first obstacle for a full integration of EEG and fMRI information. Moreover, a parametric specification of a function representing the commonalities of both signals is not established. In this study, we introduce a new data-driven method for estimating the transfer function from EEG signal to fMRI signal at EEG sampling rate. This approach avoids EEG subsampling to fMRI time resolution and naturally provides a test for EEG predictive power over BOLD signal fluctuations, in a well-established statistical framework. We illustrate this concept in resting state (eyes closed) and visual simultaneous fMRI-EEG experiments. The results point out that it is possible to predict the BOLD fluctuations in occipital cortex by using EEG measurements. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we examine morphological changes in cortical thickness of patients with Alzheimer`s disease (AD) using image analysis algorithms for brain structure segmentation and study automatic classification of AD patients using cortical and volumetric data. Cortical thickness of AD patients (n = 14) was measured using MRI cortical surface-based analysis and compared with healthy subjects (n = 20). Data was analyzed using an automated algorithm for tissue segmentation and classification. A Support Vector Machine (SVM) was applied over the volumetric measurements of subcortical and cortical structures to separate AD patients from controls. The group analysis showed cortical thickness reduction in the superior temporal lobe, parahippocampal gyrus, and enthorhinal cortex in both hemispheres. We also found cortical thinning in the isthmus of cingulate gyrus and middle temporal gyrus at the right hemisphere, as well as a reduction of the cortical mantle in areas previously shown to be associated with AD. We also confirmed that automatic classification algorithms (SVM) could be helpful to distinguish AD patients from healthy controls. Moreover, the same areas implicated in the pathogenesis of AD were the main parameters driving the classification algorithm. While the patient sample used in this study was relatively small, we expect that using a database of regional volumes derived from MRI scans of a large number of subjects will increase the SVM power of AD patient identification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: Tinnitus is a frequent disorder which is very difficult to treat and there is compelling evidence that tinnitus is associated with functional alterations in the central nervous system. Targeted modulation of tinnitus-related cortical activity has been proposed as a promising new treatment approach. We aimed to investigate both immediate and long-term effects of low frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) in patients with tinnitus and normal hearing. Methods: Using a parallel design, 20 patients were randomized to receive either active or placebo stimulation over the left temporoparietal cortex for five consecutive days. Treatment results were assessed by using the Tinnitus Handicap Inventory. Ethyl cysteinate dimmer-single photon emission computed tomography (SPECT) imaging was performed before and 14 days after rTMS. Results: After active rTMS there was significant improvement of the tinnitus score as compared to sham rTMS for up to 6 months after stimulation. SPECT measurements demonstrated a reduction of metabolic activity in the inferior left temporal lobe after active rTMS. Conclusion: These results support the potential of rTMS as a new therapeutic tool for the treatment of chronic tinnitus, by demonstrating a significant reduction of tinnitus complaints over a period of at least 6 months and significant reduction of neural activity in the inferior temporal cortex, despite the stimulation applied on the superior temporal cortex.