93 resultados para inflation targets
Resumo:
Purpose Dasatinib is a BCR-ABL inhibitor, 325-fold more potent than imatinib against unmutated BCR-ABL in vitro. Phase II studies have demonstrated efficacy and safety with dasatinib 70 mg twice daily in chronic-phase (CP) chronic myelogenous leukemia (CML) after imatinib treatment failure. In phase I, responses occurred with once-daily administration despite only intermittent BCR-ABL inhibition. Once-daily treatment resulted in less toxicity, suggesting that toxicity results from continuous inhibition of unintended targets. Here, a dose-and schedule-optimization study is reported. Patients and Methods In this open-label phase III trial, 670 patients with imatinib-resistant or -intolerant CP-CML were randomly assigned 1: 1: 1: 1 between four dasatinib treatment groups: 100 mg once daily, 50 mg twice daily, 140 mg once daily, or 70 mg twice daily. Results With minimum follow-up of 6 months (median treatment duration, 8 months; range, = 1 to 15 months), marked and comparable hematologic (complete, 86% to 92%) and cytogenetic (major, 54% to 59%; complete, 41% to 45%) response rates were observed across the four groups. Time to and duration of cytogenetic response were similar, as was progression-free survival (8% to 11% of patients experienced disease progression or died). Compared with the approved 70-mg twice-daily regimen, dasatinib 100 mg once daily resulted in significantly lower rates of pleural effusion (all grades, 7% v 16%; P = .024) and grade 3 to 4 thrombocytopenia (22% v 37%; P = .004), and fewer patients required dose interruption (51% v 68%), reduction (30% v 55%), or discontinuation (16% v 23%). Conclusion Dasatinib 100 mg once daily retains the efficacy of 70 mg twice daily with less toxicity. Intermittent target inhibition with tyrosine kinase inhibitors may preserve efficacy and reduce adverse events.
Resumo:
To evaluate differential gene expression in penile tissue after treatment with the phosphodiesterase 5 (PDE5) inhibitor tadalafil, as of the three clinically available PDE5 inhibitors (sildenafil, tadalafil, and vardenafil) used for the treatment of erectile dysfunction (ED), tadalafil has a long half-life and low incidence of side-effects. In all, 32 adult rats were divided into two groups. The control group received 0.5 mL of drinking water alone, while the tadalafil group was treated with tadalafil at a dose of 0.27 mg/kg. At 4 h after treatment with water or tadalafil the rats were killed and the penile tissue was removed. The total RNA was isolated from the penile tissue from both groups and differentially expressed genes were identified by cDNA microarray analysis. To validate the expression data from the microarray analysis, quantitative real-time polymerase chain reaction (PCR) and immunohistochemistry were used. In all, 153 genes were differentially expressed between the control group and the tadalafil group. We validated the microarray results by quantitative PCR for the insulin-like growth factor binding protein 6 (IGFBP-6) gene and the neuronal calcium sensor 1 (NCS-1) gene, both of which were up-regulated in the tadalafil group, and for the natriuretic peptide receptor 1 (NPR-1) gene that was down-regulated in this group. Immunohistochemistry showed localization of the NCS-1 protein in sinusoid trabeculae of the corpus cavernosum in control and tadalafil-treated rats. There was differential expression in 153 genes after tadalafil treatment. Some of these genes such as IGFBP-6, NPR-1 and NCS-1, might result in new targets in the treatment of ED.
Resumo:
Context: Micro-RNA have emerged as an important class of short endogenous RNA that act as posttranscriptional regulators of gene expression and are constantly deregulated inhumancancer. MiR-1 has been found down-regulated in lung, colon, and prostate cancer. Objectives: In this study, we investigated the possible role of miR-1 in thyroid carcinogenesis. Design: We have analyzed miR-1 expression in a panel of thyroid neoplasias including benign and malignant lesions and searched for miR-1 targets. Results: Our results show that miR-1 expression is drastically down-regulated in thyroid adenomas and carcinomas in comparison with normal thyroid tissue. Interestingly, miR-1 down-regulation was also found in thyroid hyperproliferative nonneoplastic lesions such as goiters. We identified the CCND2, coding for the cyclin D2 (CCND2) protein that favors the G1/S transition, CXCR4, and SDF-1 alpha genes, coding for the receptor for the stromal cell derived factor-1 (SDF-1)/CXCL12 chemokine and its ligand SDF-1/CXCL12, respectively, as miR-1 targets. An inverse correlation was found between miR-1 expression and CXC chemokine receptor 4 (CXCR4) and SDF-1 alpha protein levels in papillary and anaplastic thyroid carcinomas. Consistent with a role of the CCND2 protein in cell proliferation and CXCR4 and SDF-1 alpha proteins in cell invasion and metastasis, functional studies demonstrate that miR-1 is able to inhibit thyroid carcinoma cell proliferation and migration. Conclusions: These results indicate the involvement of miR-1 in thyroid cell proliferation and migration, validating a role of miR-1 down-regulation in thyroid carcinogenesis. (J Clin Endocrinol Metab 96: E1388-E1398, 2011)