194 resultados para gas-particle distribution
Resumo:
The aggregation of interacting Brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the concentration range considered. By generalizing Kramers' rate theory to the presence of shear and collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.
Resumo:
Using Monte Carlo simulations we investigate some new aspects of the phase diagram and the behavior of the diffusion coefficient in an associating lattice gas (ALG) model on different regions of the phase diagram. The ALG model combines a two dimensional lattice gas where particles interact through a soft core potential and orientational degrees of freedom. The competition between soft core potential and directional attractive forces results in a high density liquid phase, a low density liquid phase, and a gas phase. Besides anomalies in the behavior of the density with the temperature at constant pressure and of the diffusion coefficient with density at constant temperature are also found. The two liquid phases are separated by a coexistence line that ends in a bicritical point. The low density liquid phase is separated from the gas phase by a coexistence line that ends in tricritical point. The bicritical and tricritical points are linked by a critical lambda-line. The high density liquid phase and the fluid phases are separated by a second critical tau-line. We then investigate how the diffusion coefficient behaves on different regions of the chemical potential-temperature phase diagram. We find that diffusivity undergoes two types of dynamic transitions: a fragile-to-strong transition when the critical lambda-line is crossed by decreasing the temperature at a constant chemical potential; and a strong-to-strong transition when the critical tau-line is crossed by decreasing the temperature at a constant chemical potential.
Resumo:
Measurements in Au + Au collisions at root s(NN) = 200 GeV of jet correlations for a trigger hadron at intermediate transverse momentum (p(T,trig)) with associated mesons or baryons at lower p(T,assoc) indicate strong modification of the away-side jet. The ratio of jet-associated baryons to mesons increases with centrality and p(T,assoc). For the most central collisions, the ratio is similar to that for inclusive measurements. This trend is incompatible with in-vacuum fragmentation but could be due to jetlike contributions from correlated soft partons, which recombine upon hadronization.
Resumo:
The effects of fluctuating initial conditions are studied in the context of relativistic heavy ion collisions where a rapidly evolving system is formed. Two-particle correlation analysis is applied to events generated with the NEXSPHERIO hydrodynamic code, starting with fluctuating nonsmooth initial conditions (IC). The results show that the nonsmoothness in the IC survives the hydroevolution and can be seen as topological features of the angular correlation function of the particles emerging from the evolving system. A long range correlation is observed in the longitudinal direction and in the azimuthal direction a double peak structure is observed in the opposite direction to the trigger particle. This analysis provides clear evidence that these are signatures of the combined effect of tubular structures present in the IC and the proceeding collective dynamics of the hot and dense medium.
Resumo:
In random matrix theory, the Tracy-Widom (TW) distribution describes the behavior of the largest eigenvalue. We consider here two models in which TW undergoes transformations. In the first one disorder is introduced in the Gaussian ensembles by superimposing an external source of randomness. A competition between TW and a normal (Gaussian) distribution results, depending on the spreading of the disorder. The second model consists of removing at random a fraction of (correlated) eigenvalues of a random matrix. The usual formalism of Fredholm determinants extends naturally. A continuous transition from TW to the Weilbull distribution, characteristic of extreme values of an uncorrelated sequence, is obtained.
Resumo:
We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in A + A collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time (tau(rel)) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small tau(rel) it also allows one to catch the viscous effects in hadronic component-hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion m(T) spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher p(T) particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.
Resumo:
The energy barrier distribution E(b) of five samples with different concentrations x of Ni nanoparticles using scaling plots from ac magnetic susceptibility data has been determined. The scaling of the imaginary part of the susceptibility chi""(v, T) versus T ln (iota t/tau(0)) remains valid for all samples, which display Ni nanoparticles with similar shape and size. The mean value < E(b)> increases appreciably with increasing x, or more appropriately with increasing dipolar interactions between Ni nanoparticles. We argue that such an increase in < E(b)> constitutes a powerful tool for quality control in magnetic recording media technology where the dipolar interaction plays an important role. (c) 2011 American Institute of Physics. [doi: 10.1063/1.3533911]
Resumo:
We report on temperature-dependent magnetoresistance measurements in balanced double quantum wells exposed to microwave irradiation for various frequencies. We have found that the resistance oscillations are described by the microwave-induced modification of electron distribution function limited by inelastic scattering (inelastic mechanism), up to a temperature of T*similar or equal to 4 K. With increasing temperature, a strong deviation of the oscillation amplitudes from the behavior predicted by this mechanism is observed, presumably indicating a crossover to another mechanism of microwave photoresistance, with similar frequency dependence. Our analysis shows that this deviation cannot be fully understood in terms of contribution from the mechanisms discussed in theory.
Resumo:
High-resolution synchrotron x-ray powder diffraction in La(0.7)Ca(0.3)MnO(3) shows in detail a first-order structural phase transition from orthorhombic (space-group Pnma) to rhombohedral (space-group R (3) over barc) crystal structures near T(S)=710 K. Magnetic susceptibility measurements show that the rhombohedral phase strictly obeys the Curie-Weiss law as opposed to the orthorhombic phase. A concomitant change in the electrical resistivity behavior, consistent with an alteration from nonadiabatic to adiabatic small polaron hopping regimes, was also observed at T(S). The simultaneous change in transport and magnetic properties are identified as a transition from a correlated polaron liquid for T
Resumo:
Using a combination of density functional theory and recursive Green's functions techniques, we present a full description of a large scale sensor, accounting for disorder and different coverages. Here, we use this method to demonstrate the functionality of nitrogen-rich carbon nanotubes as ammonia sensors as an example. We show how the molecules one wishes to detect bind to the most relevant defects on the nanotube, describe how these interactions lead to changes in the electronic transport properties of each isolated defect, and demonstrate that there are significative resistance changes even in the presence of disorder, elucidating how a realistic nanosensor works.
Resumo:
We present the experimental and theoretical studies of the magnetoresistance oscillations induced by the resonance transitions of electrons between the tunnel-coupled states in double quantum wells. The suppression of these oscillations with increasing temperature is irrelevant to the thermal broadening of the Fermi distribution and reflects the temperature dependence of the quantum lifetime of electrons. The gate control of the period and amplitude of the oscillations is demonstrated.
Resumo:
We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at the BNL Relativistic Heavy Ion Collider (RHIC). Pairs of back-to-back high-transverse-momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two-and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudorapidity Delta eta or relative azimuthal angle Delta phi from d + Au to central Au + Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties.
Resumo:
We present results on strange and multistrange particle production in Au + Au collisions at root s(NN) = 62.4 GeV as measured with the STAR detector at RHIC. Midrapidity transverse momentum spectra and integrated yields of K(S)(0), Lambda, Xi, and Omega and their antiparticles are presented for different centrality classes. The particle yields and ratios follow a smooth energy dependence. Chemical freeze-out parameters, temperature, baryon chemical potential, and strangeness saturation factor obtained from the particle yields are presented. Intermediate transverse momentum (p(T)) phenomena are discussed based on the ratio of the measured baryon-to-meson spectra and nuclear modification factor. The centrality dependence of various measurements presented show a similar behavior as seen in Au + Au collisions at root s(NN) = 200 GeV.
Resumo:
The quasi-elastic excitation function for the (17)O+(64)Zn system was measured at energies near and below the Coulomb barrier, at the backward angle theta(lab) = 161 degrees. The corresponding quasi-elastic barrier distribution was derived. The excitation function for the neutron stripping reactions was also measured, at the same angle and energies, and the experimental values of the spectroscopic factors were deduced by fitting the data. A reasonably good agreement was obtained between the experimental quasi-elastic barrier distribution with the coupled-channel calculations including a very large number of channels. Of the channels investigated, three dominated the coupling matrix: two inelastic channels, (64)Zn(2(1)(+)) and (17)O(1/(+)(2)), and one-neutron transfer channel, particularly the first one. On the other hand, a very good agreement is obtained when we use a nuclear diffuseness for the (17)O nucleus larger than the one for (16)O. We verify that quasi-elastic barrier distribution is a sensitive tool for determining nuclear matter diffuseness.
Resumo:
Cross sections of (120)Sn(alpha,alpha)(120)Sn elastic scattering have been extracted from the alpha-particle-beam contamination of a recent (120)Sn((6)He,(6)He)(120)Sn experiment. Both reactions are analyzed using systematic double-folding potentials in the real part and smoothly varying Woods-Saxon potentials in the imaginary part. The potential extracted from the (120)Sn((6)He,(6)He)(120)Sn data may be used as the basis for the construction of a simple global (6)He optical potential. The comparison of the (6)He and alpha data shows that the halo nature of the (6)He nucleus leads to a clear signature in the reflexion coefficients eta(L) : The relevant angular momenta L with eta(L) >> 0 and eta(L) << 1 are shifted to larger L with a broader distribution. This signature is not present in the alpha-scattering data and can thus be used as a new criterion for the definition of a halo nucleus.