252 resultados para fungal infection
Resumo:
Fungal entomopathogens have been used more frequently than other types of pathogens for classical biological control. Among 136 programs using different groups of arthropod pathogens, 49.3% have introduced fungal pathogens (including both the traditional fungi and microsporidia). The most commonly introduced species was Metarhizium anisopliae (Metschnikoff) Sorokin, with 13 introductions, followed by Entomophaga maimaiga Humber, Shimazu & Soper, which was released seven times. The majority of introduction programs have focused on controlling invasive species of insects or mites (70.7%) rather than on native hosts (29.4%). Almost half of the introductions of traditional fungi targeted species of Hemiptera and 75% of the microsporidia introduced have been introduced against lepidopteran species. The United States was the country where most introductions of fungi took place (n = 24). From 1993 to 2007, no arthropod pathogens were released in the US due to the rigorous regulatory structure, but in 2008 two species of microsporidia were introduced against the gypsy moth, Lymantria dispar (L.). Establishment of entomopathogenic fungi in programs introducing traditional fungi was 32.1% and establishment was 50.0% for programs introducing microsporidia. In some programs, releases have resulted in permanent successful establishment with no non-target effects. In summary, classical biological control using fungal entomopathogens can provide a successful and environmentally friendly avenue for controlling arthropod pests, including the increasing numbers of invasive non-native species.
Resumo:
The spider mites Tetranychus urticae Koch and Tetranychus evansi Baker and Pritchard are important pests of horticultural crops. They are infected by entomopathogenic fungi naturally or experimentally. Fungal pathogens known to cause high infection in spider mite populations belong to the order Entomophthorales and include Neozygites spp. Studies are being carried out to develop some of these fungi as mycoacaricides, as standalone control measures in an inundative strategy to replace the synthetic acaricides currently in use or as a component of integrated mite management. Although emphasis has been put on inundative releases, entomopathogenic fungi can also be used in classical, conservation and augmentative biological control. Permanent establishment of an exotic agent in a new area of introduction may be possible in the case of spider mites. Conservation biological control can be achieved by identifying strategies to promote any natural enemies already present within crop ecosystems, based on a thorough understanding of their biology, ecology and behaviour. Further research should focus on development of efficient mass production systems, formulation, and delivery systems of fungal pathogens.
Resumo:
The ability of Phakopsora pachyrhizi to cause infection under conditions of discontinuous wetness was investigated. In in vitro experiments, droplets of a uredospore suspension were deposited onto the surface of polystyrene. After an initial wetting period of either 1, 2 or 4 h, the drops were dried for different time intervals and then the wetness was restored for 11, 10 or 8 h. Germination and appressorium formation were evaluated. In in vivo experiments, soybean plants were inoculated with a uredospore suspension. Leaf wetness was interrupted for 1, 3 or 6 h after initial wetting periods of 1, 2 or 4 h. Then, the wetting was re-established for 11, 10 or 8 h, respectively. Rust severity was evaluated 14 days after inoculation. The germination of the spores and the formation of the appressoria on the soybean leaves after different periods of wetness were also quantified in vivo by scanning electron microscopy. P. pachyrhizi showed a high infective capacity during short periods of time. An interruption of wetness after 1 h caused average reductions in germination from 56 to 75% and in appressorium formation from 84 to 96%. Rust severity was lower in all of the in vivo treatments with discontinuous wetness when compared to the control plants. Rust severity was zero when the interruption of wetness occurred 4 h after the initial wetting. Wetting interruptions after 1 and 2 h reduced the average rust severity by 83 and 77%, respectively. The germination of the uredospores on the soybean leaves occurred after 2 h of wetness, with a maximum germination appearing after 4 h of wetness. Wetness interruption affected mainly the spores that had initiated the germination.
Resumo:
Nicandra physaloides, a common weed in South America, was found to be infected by an isolate of Tomato severe rugose virus (ToSRV), a bipartite begomovirus. The plants developed severe yellow rugose mosaic and were collected in So Paulo State, Brazil. This isolate of ToSRV was transmitted by Bemisia tabaci B biotype from infected plants of N. physaloides to healthy plants of N. physaloides and tomato in a glasshouse. This is the first report of natural infection of N. physaloides by ToSRV in Brazil.
Resumo:
Inheritance of resistance to Puccinia psidii G. Winter in a eucalyptus interspecific hybrid progeny evaluated under conditions of natural infection Rust caused by the fungus Puccinia psidii is currently the most important disease of eucalyptus. It is widely disseminated in Brazil, and causes serious damage in nurseries and plantation areas. The identification of resistant germplasm along with knowledge of the genetic basis of resistance heredity are the first requirements for the success of breeding programs aiming to develop resistant varieties. Earlier studies carried out under controlled conditions suggested a monogenic control as well as the participation of at least two genes promoting resistance to rust. The goal of this study was to evaluate the resistance to P. psidii under field conditions in fourteen progenies from controlled crosses and self-crosses among four hybrid clones of Eucalyptus grandis Hill ex Maiden x Eucalyptus urophylla ST Blake that contrast for resistance to the fungus. Results indicated that resistance could be explained by one locus with main effects and at least three different alleles. However, loci with minor effects may influence the resistance, since variation on severity classes was observed. Differences in segregation of resistance between reciprocal crosses were not observed, indicating absence of cytoplasmic effects.
Resumo:
The purposes of this workwere to characterize postharvest injuries and to evaluate the physicochemical characteristics of`Nra` and `Lima`oranges and `Murcott` tangor at Ceagesp market, as well as to characterize the environmental mycoflora in retail points at Ceagesp in 2006. Fruits collected at retail points were stored for 14 days at 25 degrees C and 85-90% RH. The incidence of injuries was visually evaluated every three days. The physicochemical characteristics analyzed were titratable acidity and soluble solids amount. The environmental mycoflora was sampled according to the gravimetric method, using Petri dishes containing potato-dextrose-agar medium+pentabiotic opened for two minutes. The average rot incidences in `Pera` and `Lima` oranges and `Murcott` tangor were 12.8, 14.9 and 25.8%, respectively, at the end of the storage period, and green mold was the main postharvest disease. Associations between physicochemical parameters and rot incidence was, in general, not significant. The environmental fungal population varied significantly between the sampling months in retail points with an average of 25.3 cfu/plate. Penicillium and Cladosporium were the most recorded genera of fungi. Positive correlation (r=0.96) was observed between frequency of P digitatum found in the environment of retail points and the green mold in on-sale fruits of `Pera` orange. However, for `Lima` orange and `Murcott` tangor such a correlation was not verified.
Resumo:
Brown rot, caused by Monilinia fructicola, is the most widespread disease for organic peach production systems in Brazil. The objective of this study was to determine the favorable periods for latent infection by M. fructicola in organic systems. The field experiment was carried out during 2006, 2007 and 2008 using the cultivar Aurora. After thinning fruits were bagged using white paraffin bags, and the treatments were performed by removing the bags and exposing the fruit for four days to the natural infection during each of seven fruit stages from pit hardening to harvest. Throughout the entire growing season, the conidial density and the weather variables were measured and related to the disease incidence using multiple regression analyses. At the fourth day after harvest in each season, the cumulative disease incidence was assessed, and it ranged from 40 to 98%. The incidence of brown rot on fruit that were exposed during the embryo growing stage was lower than that of unbagged fruit throughout the entire season in 2006 and 2008. The relative humidity and the conidia density were significantly correlated to disease incidence. Based on our results, M. fructicola can infect peaches during any stage of fruit development, and control of the disease must be revised to account for organic peach production systems. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Haemonchus parasites are responsible for many losses in animal production. However, few studies are available, especially of zebu cattle. In this study, we investigated mRNA differences of immune response genes in naive Nellore calves infected with Haemonchus placei, relating these differences to patterns of cellular infiltrate. Calves were infected with 15,000 H. placei 13 larvae and after 7 days lymph node and abomasum tissues were collected. IL-2, IL-4, IL-8, IL-12, IL-13, IFN-gamma, MCP-1, lysozyme, pepsinogen and TNF-alpha genes were evaluated by qPCR. Mast cells, eosinophils and globular leukocytes were counted by abomasum histology. In the infected group, IL-4, IL-13 and TNF-alpha were up-regulated in the abomasal lymph node. In the abomasum, IL-13 increased and TNF-alpha was down-regulated (p < 0.05). No differences were detected for mast cells and eosinophil counts in abomasal tissue (p > 0.05). We conclude that for this infection time, there was Th2 polarization but that cellular infiltrate in abomasal tissue takes longer to develop. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Influence of light and leaf epicuticular wax layer on Phakopsora pachyrhizi infection in soybean Asian rust, caused by the fungus Phakopsora pachyrhizi, is one of the most serious phytosanitary problems of soybean in Brazil, especially because no cultivars with satisfactory resistance levels as yet exist. The objective of this study was to evaluate the influence of luminosity and of leaf epicuticular wax on the infection of soybean by P. pachyrhizi. The adaxial and abaxial leaflet surfaces of the first trifoliate leaf from cultivar BRS 154, phenological stage V2, were inoculated with a suspension of 105 uredospores/mL. The plants were kept for 24 hours in a humid chamber at temperature of 23 degrees C, in light or dark conditions, using a factorial design. Subsequently, the plants were maintained for 14 days under a 12-hour photoperiod. The disease severity and density were evaluated. For in vitro experiments, in light or dark conditions, the evaluation was done in terms of uredospore germination and appressorium formation. The wax content of adaxial and abaxial leaflets was analyzed quantitatively using chloroform extraction and ultrastructurally using scanning electron microscope. Higher density and severity were observed when the adaxial surface was inoculated, with later incubation of the plants in the dark, with no significant interaction between these factors. Spore germination in the dark (40.7%) was statistically different from spore germination in the light (28.5%). The same effect was observed with appressorium formation, in the dark (24.7%) and in the light (12.8%). The quantity and the ultrastructural aspects of epicuticular wax content did not show differences between the adaxial and abaxial surfaces; nor did they show any effect on infection by Phakopsora pachyrhizi in the soybean cultivar studied.
Resumo:
Influence of soybean phenological stage and leaflets age on infection by Phakopsora pachyrhizi This work was conducted to study the influence of soybean growth stage and leaf age on the infection of Phakopsora pachyrhizi, the soybean rust pathogen. Soybean plants (cv. BRS 154 and BRS 258) at the V(3), R(1) and R(5) growth stages were inoculated with a 1 x 10(5) urediniospores per mL suspension. After a period of 24 hours in dew chambers, all plants were removed from the chambers and placed under greenhouse conditions for 20 days. Mean latent period (PLM) and disease severity were estimated. The susceptibility of trifoliate leaves to soybean rust was estimated on cv. BRS 154 at the growth stage R5. Pathogen inoculation was done at the first four trifoliate leaves. Fifteen days after inoculation, leaflets of each trefoil were evaluated for disease severity, lesion mean size and infection frequency. Plants` growth stage did not influence the PLM. Cultivars BRS 154 and BRS 258 presented PLM of 8 and 9 days, respectively. There was no difference in disease severity at the growth stages V(3) and R(1), but those values were higher than at the R(5) growth stage, 8 days after inoculation. The oldest trefoil showed the highest disease values.
Resumo:
The spleen is a secondary lymphoid organ that harbours a variety of cells such as T and B lymphocytes and antigen-presenting cells important to immune response development. In this study, we evaluated the impact of spleen removal in the immune response to experimental Trypanosoma cruzi infection. C57BL/6 mice were infected with Y strain of the parasite and infection was followed daily. Mice that underwent splenectomy had fewer parasites in peripheral blood at the peak of infection; however, mortality was increased. Histological analysis of heart and liver tissues revealed an increased number of parasites and inflammatory infiltrates at these sites. Spleen removal was associated with reduction in IFN-gamma and TNF-alpha production during infection as well as with a decrease in specific antibody secretion. Haematological disorders were also detected. Splenectomized mice exhibited severe anaemia and decreased bone marrow cell numbers. Our results indicate that spleen integrity is critical in T. cruzi infection for the immune response against the parasite, as well as for the control of bone marrow haematological function.
Resumo:
The virulence of four Sporothrix schenckii isolates was compared in a murine model of sporotrichosis, together with the protein pattern of the yeast cell surface and the capacity to bind the extracellular matrix protein fibronectin. Virulence was determined by the mortality rate, fungal burden and histopathology. Two clinical isolates were more virulent for C57BL/6 mice, but no direct correlation was seen between virulence and the clinical or environmental origin of the isolates. The lowest virulence was observed for an isolate recovered from a patient with meningeal sporotrichosis. Although all isolates could effectively disseminate, the dissemination patterns were not similar. Using flow cytometry analysis, we investigated the interaction of all the strains with fibronectin, and showed that the binding capacity correlated with virulence. Western blot analysis of S. schenckii cell wall extracts revealed positive bands for fibronectin in the range of 3792 kDa. The 70 kDa adhesin was also recognized by a protective monoclonal antibody raised against a gp70 antigen of S. schenckii (mAb P6E7). Confocal microscopy confirmed the co-localization of fibronectin and mAb P6E7 on the yeast cell surface. To our knowledge, this is the first report identifying adhesins for fibronectin on the surface of this human pathogen.
Resumo:
Cell-mediated and innate immunity are considered the most important mechanisms of host defense against fungus infections. However, recent studies demonstrated that specific antibodies show different degrees of protection against mycosis. In a previous study, antigens secreted by Sporothrix schenckii induced a specific humoral response in infected animals, mainly against the 70-kDa molecule, indicating a possible participation of antibodies to this antigen in infection control. in the present study, an IgG1 mAb was produced against a 70-kDa glycoprotein of S. schenckii in order to better understand the effect of passive immunization of mice infected with S. schenckii. Results showed a significant reduction in the number of CFU in organs of mice when the mAb was injected before and during S. schenckii infection. Similar results were observed when T-cell-deficient mice were used. Moreover, in a second schedule treatment, the mAb was injected after infection was established, and again we observed a significant reduction in CFU associated with an increase of IFN-gamma production. Also, the 70-kDa antigen is shown to be a putative adhesin present on the surface of this fungus. In conclusion, we report for the first time the protective effect of a specific antibody against S. schenckii.
Resumo:
The Apical Membrane Antigen-1 (AMA-1) of Plasmodium sp. has been suggested as a vaccine candidate against malaria. This protein seems to be involved in merozoite invasion and its extra-cellular portion contains three distinct domains: DI, DII, and DIII. Previously, we described that Plasmodium vivax AMA-1 (PvAMA-1) ectodomain is highly immunogenic in natural human infections. Here, we expressed each domain, separately or in combination (DI-II or DII-III), as bacterial recombinant proteins to map immunodominant epitopes within the PvAMA-1 ectodomain. IgG recognition was assessed by ELISA using sera of P. vivax-infected individuals collected from endemic regions of Brazil or antibodies raised in immunized mice. The frequencies of responders to recombinant proteins containing the DII were higher than the others and similar to the ones observed against the PvAMA-1 ectodomain. Moreover, ELISA inhibition assays using the PvAMA-1 ectodomain as substrate revealed the presence of many common epitopes within DI-II that are recognized by human immune antibodies. Finally, immunization of mice with the PvAMA-1 ectodomain induced high levels of antibodies predominantly to DI-II. Together, our results indicate that DII is particularly immunogenic during natural human infections, thus indicating that this region could be used as part of an experimental sub-unit vaccine to prevent vivax malaria. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Host responses following exposure to Mycobacterium tuberculosis (TB) are complex and can significantly affect clinical outcome. These responses, which are largely mediated by complex immune mechanisms involving peripheral blood cells (PBCs) such as T-lymphocytes, NK cells and monocyte-derived macrophages, have not been fully characterized. We hypothesize that different clinical outcome following TB exposure will be uniquely reflected in host gene expression profiles, and expression profiling of PBCs can be used to discriminate between different TB infectious outcomes. In this study, microarray analysis was performed on PBCs from three TB groups (BCG-vaccinated, latent TB infection, and active TB infection) and a control healthy group. Supervised learning algorithms were used to identify signature genomic responses that differentiate among group samples. Gene Set Enrichment Analysis was used to determine sets of genes that were co-regulated. Multivariate permutation analysis (p < 0.01) gave 645 genes differentially expressed among the four groups, with both distinct and common patterns of gene expression observed for each group. A 127-probeset, representing 77 known genes, capable of accurately classifying samples into their respective groups was identified. In addition, 13 insulin-sensitive genes were found to be differentially regulated in all three TB infected groups, underscoring the functional association between insulin signaling pathway and TB infection. Published by Elsevier Ltd.