104 resultados para X-RAYS: GALAXIES: CLUSTERS
Resumo:
We detail an innovative new technique for measuring the two-dimensional (2D) velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h(3) and h(4)) of the stellar populations of galaxy haloes using spectra from Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) multi-object spectroscopic observations. The data are used to reconstruct 2D rotation velocity maps. Here we present data for five nearby early-type galaxies to similar to three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line.
Resumo:
We have obtained the mass-metallicity (M-Z) relation at different lookback times for the same set of galaxies from the Sloan Digital Sky Survey, using the stellar metallicities estimated with our spectral synthesis code STARLIGHT. We have found that this relation steepens and spans a wider range in both mass and metallicity at higher redshifts. We have modelled the time evolution of stellar metallicity with a closed-box chemical evolution model, for galaxies of different types and masses. Our results suggest that the M-Z relation for galaxies with present-day stellar masses down to 10(10) M(circle dot) is mainly driven by the history of star formation and not by inflows or outflows.
Resumo:
The shadowing of cosmic ray primaries by the moon and sun was observed by the MINOS far detector at a depth of 2070 mwe using 83.54 million cosmic ray muons accumulated over 1857.91 live-days. The shadow of the moon was detected at the 5.6 sigma level and the shadow of the sun at the 3.8 sigma level using a log-likelihood search in celestial coordinates. The moon shadow was used to quantify the absolute astrophysical pointing of the detector to be 0.17 +/- 0.12 degrees. Hints of interplanetary magnetic field effects were observed in both the sun and moon shadow. Published by Elsevier B.V.
Resumo:
Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The correlation has maximum significance for cosmic rays with energy greater than similar to 6 x 10(19) eV and AGN at a distance less than similar to 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest-energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuz`min effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigate the influence of ail interaction between dark energy and dark matter upon the dynamics of galaxy clusters. We obtain file general Layser-Irvine equation in the presence of interactions, and find how, in that case. the virial theorem stands corrected. Using optical, X-ray and weak lensing data from 33 relaxed galaxy clusters, we put constraints on the strength of the coupling between the dark sectors. Available data Suggests that this coupling is small but positive, indicating that dark energy might be decaying into dark matter. Systematic effects between the several mass estimates, however, should be better known, before definitive conclusions oil the magnitude and significance of this coupling could be established. (C) 2009 Published by Elsevier B.V.
Resumo:
Using the first-principles real-space linear muffin-tin orbital method within the atomic sphere approximation (RS-LMTO-ASA) we study hyperfine and local magnetic properties of substituted pure Fe and Fe-Cu clusters in an fcc Cu matrix. Spin and orbital contributions to magnetic moments, hyperfine fields and the Mossbauer isomer shifts at the Fe sites in Fe precipitates and Fe-Cu alloy clusters of sizes up to 60 Fe atoms embedded in the Cu matrix are calculated and the influence of the local environment on these properties is discussed.
Resumo:
In this work, Ba(Zr(0.25)Ti(0.75))O(3) ceramic was prepared by solid-state reaction. This material was characterized by x-ray diffraction and Fourier transform Raman spectroscopy. The temperature dependent dielectric properties were investigated in the frequency range from 1 kHz to 1 MHz. The dielectric measurements indicated a diffuse phase transition. The broadening of the dielectric permittivity in the frequency range as well as its shifting at higher temperatures indicated a relaxor-like behaviour for this material. The diffusivity and the relaxation strength were estimated using the modified Curie-Weiss law. The optical properties were analysed by ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements at room temperature. The UV-vis spectrum indicated that the Ba(Zr(0.25)Ti(0.75))O(3) ceramic has an optical band gap of 2.98 eV. A blue PL emission was observed for this compound when excited with 350 nm wavelength. The polarity as well as the PL property of this material was attributed to the presence of polar [TiO(6)] distorted clusters into a globally cubic matrix.
Resumo:
[Ba(1-x)Y(2x/3)](Zr(0.25)Ti(0.75))O(3) powders with different yttrium concentrations (x = 0, 0.025 and 0.05) were prepared by solid state reaction. These powders were analyzed by X-ray diffraction (XRD). Fourier transform Raman scattering (FT-RS), Fourier transform infrared (FT-IR) and X-ray absorption near-edge (XANES) spectroscopies. The optical properties were investigated by means of ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. Even with the addition of yttrium, the XRD patterns revealed that all powders crystallize in a perovskite-type cubic structure. FT-RS and FT-IR spectra indicated that the presence of [YO(6)] clusters is able to change the interaction forces between the O-Ti-O and O-Zr-O bonds. XANES spectra were used to obtain information on the off-center Ti displacements or distortion effects on the [TiO(6)] clusters. The different optical band gap values estimated from UV-vis spectra suggested the existence of intermediary energy levels (shallow or deep holes) within the band gap. The PL measurements carried out with a 350 nm wavelength at room temperature showed that all powders present typical broad band emissions in the blue region. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
The Pierre Auger Collaboration has reported. evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E > E(th) = 5.5 x 10(19) eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E > E(th) are heavy nuclei with charge Z, the proton component of the sources should lead to excesses in the same regions at energies E/Z. We here report the lack of anisotropies in these directions at energies above E(th)/Z (for illustrative values of Z = 6, 13, 26). If the anisotropies above E(th) are due to nuclei with charge Z, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies.
Resumo:
Polycrystalline La(0.86)Sr(0.14)Mn(1-x)Cu(x)O(3+delta) (x = 0, 0.05, 0.10, 0.15, 0.20) manganites were investigated by means of magnetic measurements and zero-field (139)La and (55)Mn nuclear magnetic resonance (NMR) spectroscopy. Magnetization versus temperature measurements revealed a paramagnetic to ferromagnetic transition in most samples, with lower Curie temperatures and broader transitions for samples with higher Cu contents. The details of the magnetization measurements suggested a phase-separated scenario, with ferromagnetic clusters embedded in an antiferromagnetic matrix, especially for the samples with large Cu contents (x = 0.15 and 0.20). Zero-field (139)La NMR measurements confirmed this finding, since the spectral features remained almost unchanged for all Cu-doped samples, whereas the bulk magnetization was drastically reduced with increasing Cu content. (55)Mn NMR spectra were again typical of ferromagnetic regions, with a broadening of the resonance line caused by the disorder introduced by the Cu doping. The results indicate a coexistence of different magnetic phases in the manganites studied, with the addition of Cu contributing to the weakening of the double-exchange interaction in most parts of the material.
Resumo:
We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5 x 10(17) eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.
Measurement of the energy spectrum of cosmic rays above 10(18) eV using the Pierre Auger Observatory
Resumo:
We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E(-gamma) with index gamma = 3 3 below the ankle which is measured at log(10)(E(ankle)/eV) = 18 6 Above the ankle the spectrum is described by a power law with index 2 6 followed by a flux suppression, above about log(10)(E/eV) = 19 5, detected with high statistical significance (C) 2010 Elsevier B V All rights reserved
Resumo:
Glycosyl hydrolases are enzymes capable of breaking the glycosidic linkage of polysaccharides and have considerable industrial and biotechnological applications. Driven by the later applications, it is frequently desirable that glycosyl hydrolases display stability and activity under extreme environment conditions, such as high temperatures and extreme pHs. Here, we present X-ray structure of the hyperthermophilic laminarinase from Rhodothermus marinus (RmLamR) determined at 1.95 angstrom resolution and molecular dynamics simulation studies aimed to comprehend the molecular basis, for the thermal stability of this class of enzymes. As most thermostable proteins, RmLamR contains a relatively large number of salt bridges, which are not randomly distributed on the structure. On the contrary, they form clusters interconnecting beta-sheets of the catalytic domain. Not all salt bridges, however, are beneficial for the protein thermostability: the existence of charge-charge interactions permeating the hydrophobic core of the enzymes actually contributes to destabilize the structure by facilitating water penetration into hydrophobic cavities, as can be seen in the case of mesophilic enzymes. Furthermore, we demonstrate that the mobility of the side-chains is perturbed differently in each class of enzymes. The side-chains of loop residues surrounding the catalytic cleft in the mesophilic laminarinase gain mobility and obstruct the active site at high temperature. By contrast, thermophilic laminarinases preserve their active site flexibility, and the active-site cleft remains accessible for recognition of polysaccharide substrates even at high temperatures. The present results provide structural insights into the role played by salt-bridges and active site flexibility on protein thermal stability and may be relevant for other classes of proteins, particularly glycosyl hydrolases.