130 resultados para WHITE-MATTER HYPERINTENSITIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biogeochemical processes affecting the transport and cycling of terrestrial organic carbon in coastal and transition areas are still not fully understood One means of distinguishing between the sources of organic materials contributing to particulate organic matter (POM) in Babitonga Bay waters and sediments is by the direct measurement of delta(13)C of dissolved inorganic carbon (DIC) and delta(13)C and delta(15)N in the organic constituents. An isotopic survey was taken from samples collected in the Bay in late spring of 2004. The results indicate that the delta(13)C and delta(15)N compositions of OM varied from -21.7 parts per thousand to -26 2 parts per thousand. and from + 9 2 parts per thousand. to -0 1 parts per thousand, respectively. delta(13)C from DIC ranges from +0.04 parts per thousand to -12.7 parts per thousand The difference in the isotope compositions enables the determination of three distinct end-members terrestrial, marine and urban Moreover, the evaluation of source contribution to the particulate organic matter (POM) in the Bay, enables assessment of the anthropogenic impact. Comparing the depleted values of delta(13)C(DIC) and delta(13)C(POC) it is possible to further understand the carbon dynamic within Babitonga Bay (C) 2010 Elsevier BV All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addressing spatial variability in nitrogen (N) availability in the Central Brazilian Amazon, we hypothesized that N availability varies among white-sand vegetation types (campina and campinarana) and lowland tropical forests (dense terra-firme forests) in the Central Brazilian Amazon, under the same climate conditions. Accordingly, we measured soil and foliar N concentration and N isotope ratios (delta(15)N) throughout the campina-campinarana transect and compared to published dense terra-firme forest results. There were no differences between white-sand vegetation types in regard to soil N concentration, C:N ratio and delta(15)N across the transect. Both white-sand vegetation types showed very low foliar N concentrations and elevated foliar C:N ratios, and no significant difference between site types was observed. Foliar delta(15)N was depleted, varying from -9.6 to 1.6aEuro degrees in the white-sand vegetations. The legume Aldina heterophylla had the highest average delta(15)N values (-1.5aEuro degrees) as well as the highest foliar N concentration (2.1%) while the non-legume species had more depleted delta(15)N values and the average foliar N concentrations varied from 0.9 to 1.5% among them. Despite the high variation in foliar delta(15)N among plants, a significant and gradual (15)N-enrichment in foliar isotopic signatures throughout the campina-campinarana transect was observed. Individual plants growing in the campinarana were significantly enriched in (15)N compared to those in campina. In the white-sand N-limited ecosystems, the differentiation of N use seems to be a major cause of variations observed in foliar delta(15)N values throughout the campina-campinarana transect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sedimentary organic matter is a good tool for environmental evaluation where the sediments are deposited. We determined the elemental and C- and N-isotopic compositions of 211 sub-surface sediment samples from 13 cores (ranging from 18 to 46cm), collected in the Cananeia-Iguape estuarine-lagoonal system. The aim of this research is to evaluate the environmental variations of this tropical coastal micro-tidal system over the last decades, through SOM distribution. The studied parameters show differences between the cores located in the northern (sandy-silt sediments) and southern (sand and silty-sand) portions. The whole area presents a mixed organic matter origin signature (local mangrove plants: < -25.6 parts per thousand PDB/ phytoplancton delta(13)C values: -19.4 parts per thousand PDB). The northern cores, which submitted higher sedimentation deposition (1.46cm year(-1)), are more homogenous, presenting lower delta(13)C (< -25.2 parts per thousand PDB) and higher C/N values (in general >14), directly related to the terrestrial input from Ribeira de Iguape River (24,000 km(2) basin). The southern portion presents lower sedimentation rates (0.38cm year(-1)) and is associated to a small river basin (1,340 km(2)), presenting values Of delta(13)C: -25.0 to 23.0 parts per thousand PDB and of C/N ratio: 11 to 15. In general, the elemental contents in the 15 cores may be considered from low to medium (< 2.0% C - < 0.1% N), compared to similar environments. Although a greater marine influence is observed in the southern system portion, the majority of the cores present an elevated increase of continental deposition, most likely related to the strong silting process that the area has been subjected to since the 1850s, when an artificial channel was built linking, directly, the Ribeira River to the estuarine-lagoonal system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass burning is an important source of atmospheric Particulate Matter (PM) in Brazil: the burning of forests in the northwest and of sugar cane plantations in the southeast are important examples. The objective of this work is the measurement of the PM emission profile of burning of sugar cane and other characteristic vegetative burning in the region of Sao Carlos-SP/Brazil. Samples of PM(10) and PM(2.5) were collected in different conditions, including small laboratory controlled burnings and real ones. The samples were analysed by X-Ray Fluorescence (XRF) and 14 chemical elements quantified. t-Student tests were performed to compare the obtained profiles, using as a reference a vegetative burn profile taken from the USEPA data bank SPECIATE. All measured profiles presented significant amounts of Cl and K, which are confirmed as tracers of sugar cane foliage burning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceriporiopsis subvermispora is a promising white-rot fungus for biopulping. However, the underlying biochemistry involved in lignin removal and insignificant cellulose degradation by this species is not completely understood. This paper addresses this topic focusing on the involvement of ethanol-soluble extractives and wood transformation products in the biodegradation process. Cultures containing ethanol-extracted or in natura wood chips presented similar levels of extracellular enzymes and degradation of wood components. Fe3+-reducing compounds present in undecayed Pinus taeda were rapidly diminished by fungal degradation. Lignin-degradation products released during biodegradation restored part of the Fe3+-reducing activity. However, Fe3+ reduction was ineffective in presence of 0.5 mM oxalate at pH 4.5. Fungal consumption of Fe3+-reducing compounds and secretion of oxalic acid minimized the significance of Fenton`s reaction in the initial stages of wood biotreatment. This would explain limited polysaccharide degradation by the fungus that also lacks a complete set of hydrolytic enzymes. Scientific relevance of the paper: Ceriporiopsis subvermispora is a white-rot fungus suitable for biopulping processes because it degrades lignin selectively and causes significant structural changes on the wood components during the earlier decay stages. However, the intricate mechanism to explain lignin transformation and insignificant cellulose degradation by this species remains poorly understood. Some recent evidences pointed out for lipid peroxidation reactions as all initiating process explaining lignin degradation. On the other hand, alkylitaconic acids produced by the fungus via transformations of fatty acids occurring in wood showed to prevent polysaccharide degradation in Fenton reactions. In this context, one may conclude that the involvement of native wood substances or their transformation products in the overall wood biodegradation process induced by C subvermispora is still a matter of discussion. While free and esterified fatty acids present in wood extractives may be involved in the biosynthesis of alkylitaconic acids and in lipid peroxidation reactions, some extractives and lignin degradation products can reduce Fe3+, providing Fe2+ species needed to form OH radical via Fenton`s reaction. The present study focuses on this topic by evaluating the relevance of ethanol-soluble extractives and wood transformation products on the biodegradation of P. taeda by C subvermispora. For this, solid-state cultures containing ethanol-extracted and in natura wood chips were evaluated in details for up to 4 weeks. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the design of a new reactor configuration - an upflow fixed-bed combined anaerobic-aerobic reactor - can operate as a single treatment unit for the removal of nitrogen (approximate to 150 mg N/L) and organic matter (approximate to 1300 mg COD/L) from Lysine plant wastewater. L-Lysine, an essential amino acid for animal nutrition, is produced by fermentation from natural raw materials of agricultural origin, thus generating wastewater with high contents of organic matter and nitrogen. The best operational condition of the reactor was obtained with a hydraulic retention time of 35 h (21 h in the anaerobic zone and 14 h in the aerobic zone) and a recycling ratio (R) of 3.5. In this condition, the COD, total Kjeldahl nitrogen (TKN), and total nitrogen (TN) removal efficiencies were 97%, 96%, and 77%, respectively, with average effluent concentrations of 10 +/- 36 mg COD/L, 2 +/- 1 mg NH(4)(+)-N/L, 8 +/- 3 mg Org-N/L, 1 +/- 1 mg NH(2)(-)-N/L, and 26 +/- 23 mg NH(3)(-)-N/L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to analyze the interaction effects between temperature, feed strategy and COD/[SO(4)(2-)] levels, maintaining the same ratio, on sulfate and organic matter removal efficiency from a synthetic wastewater. This work is thus a continuation of Archilha et al. (2010) who studied the effect of feed strategy at 30 degrees C using different COD/[SO] ratios and levels. A 3.7-L anaerobic sequencing batch reactor with recirculation of the liquid phase and which contained immobilized biomass on polyurethane foam (AnSBBR) was used to treat 2.0 L synthetic wastewater in 8 h cycles. The temperatures of 15, 22.5 and 30 degrees C with two feed strategies were assessed: (a) batch and (b) batch followed by fed-batch. In strategy (a) the reactor was fed in 10 min with 2 L wastewater containing sulfate and carbon sources. In strategy (b) 1.2 L wastewater (containing only the sulfate source) was fed during the first 10 min of the cycle and the remaining 0.8 L (containing only the carbon source) in 240 min. Based on COD/[SO(4)(2-)] = 1 and on the organic matter (0.5 and 1.5 gCOD/L) and sulfate (0.5 and 1.5 gSO(4)(2-)/L) concentrations, the sulfate and organic matter loading rates applied were 1.5 and 4.5 g/L.d, i.e., same COD/[SO(4)(2-)] ratio (=1) but different levels (1.5/1.5 and 4.5/4.5 gCOD/gSO(4)(2-)). When reactor feed was 1.5 gCOD/L.d and 1.5 gSO(4)(2-)/L.d, gradual feeding (strategy b) showed to favor sulfate and organic matter removal in the investigated temperature range, indicating improved utilization of the electron donor for sulfate reduction. Sulfate removal efficiencies were 87.9; 86.3 and 84.4%, and organic matter removal efficiencies 95.2; 86.5 and 80.8% at operation temperatures of 30; 22.5 and 15 degrees C, respectively. On the other hand, when feeding was 4.5 gCOD/L.d and 4.5 gSO(4)(2-)/L.d, gradual feeding did not favor sulfate removal, indicating that gradual feeding of the electron donor did not improve sulfate reduction. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of ozone oxidation on removing high molecular weight (HMW) organics in order to improve the biodegradability of alkaline bleach plant effluent was investigated using a semi-batch reactor under different initial pH (12 and 7). After the ozonation process, the ratio of BOD5/COD increased from 0.07 to 0.16 and 0.22 for initial pH 12 and 7, respectively. Also, the effluent color decreased by 48% and 61% at initial pH 12 and pH 7, respectively. These changes were primarily driven by reductions of the HMW fractions of the effluent during ozonation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abrasive wear resistance of white cast iron was studied. The iron was solidified using two solidification rates of 1.5 and 15 degrees C/s. Mass loss was evaluated with tests of the type pin on abrasive disc using alumina of different sizes. Two matrices were tested: one predominantly austenitic and the other predominantly martensitic, containing M(3)C carbides. Samples with cooling rate of 15 degrees C/s showed higher hardness and more refined microstructure compared with those solidified at 1.5 degrees C/s. During the test, the movement of successive abrasives gave rise to the strain hardening of the austenite phase, leading to the attainment of similar levels of surface hardness, which explains why the wear rate showed no difference compared to the austenite samples with different solidification rates. For the austenitic matrix the wear rate seems to depend on the hardness of the worn surface and not on the hardness of the material without deformation. The austenitic samples showed cracking and fracture of M(3)C carbides. For the predominantly martensitic matrix, the wear rate was higher at the solidification rate of 1.5 degrees C/s, for grain size of 66 and 93 mu m. Higher abrasive sizes were found to produce greater penetration and strain hardening of austenitic matrices. However, martensitic iron produces more microcutting, increasing the wear rate of the material. The analysis of the worn surface by scanning electron microscopy indicated abrasive wear mechanisms such as: microcutting, microfatigue and microploughing. Yet, for the iron of austenitic matrix, the microploughing mechanism was more severe. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High velocity oxi-fuel (HVOF) thermal spray process has been used in order to deposit a new alloy known as multicomponent white cast iron. The coatings were characterized in terms of macrostructure, phase composition, porosity and hardness. Coating characteristics and properties were found to be dependent on the particles size range, spray distance, gases flow rate and oxygen to propane ratio. For set of parameters utilized in this job a narrow particle size range between 20 and 45 gm with a spray distance of 200 mm and oxygen to propane ratio of 4.6 are the preferred coating parameters. Coating porosity of 0.9% and hardness of 766 HV were obtained under these conditions. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest Stewardship Council (FSC) certification promises international consumers that `green-label` timber has been logged sustainably. However, recent research indicates that this is not true for ipe (Tabebuia spp.), currently flooding the US residential decking market, much of it logged in Brazil. Uneven or non-application of minimum technical standards for certification could undermine added value and eventually the certification process itself. We examine public summary reports by third-party certifiers describing the evaluation process for certified companies in the Brazilian Amazon to determine the extent to which standards are uniformly applied and the degree to which third-party certifier requirements for compliance are consistent among properties. Current best-practice harvest systems, combined with Brazilian legal norms for harvest levels, guarantee that no certified company or community complies with FSC criteria and indicators specifying species-level management. No guidelines indicate which criteria and indicators must be enforced, or to what degree, for certification to be conferred by third-party assessors; nor do objective guidelines exist for evaluating compliance for criteria and indicators for which adequate scientific information is not yet available to identify acceptable levels. Meanwhile, certified companies are expected to monitor the long-term impacts of logging on biodiversity in addition to conducting best-practice forest management. This burden should reside elsewhere. We recommend a clarification of `sustained timber yield` that reflects current state of knowledge and practice in Amazonia. Quantifiable verifiers for best-practice forest management must be developed and consistently employed. These will need to be flexible to reflect the diversity in forest structure and dynamics that prevails across this vast region. We offer suggestions for how to achieve these goals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The etiological agent of maize white spot (MWS) disease has been a subject of controversy and discussion. Initially the disease was described as Phaeosphaeria leaf spot caused by Phaeosphaeria maydis. Other authors have Suggested the existence of different fungal species causing similar symptoms. Recently, a bacterium, Pantoea ananatis, was described as the causal agent of this disease. The purpose of this Study was to offer additional information on the correct etiology of this disease by providing visual evidence of the presence of the bacterium in the interior of the MWS lesions by using transmission electron microscopy (TEM) and molecular techniques. The TEM allowed Visualization of a large amount of bacteria in the intercellular spaces of lesions collected from both artificially and naturally infected plants. Fungal structures were not visualized in young lesions. Bacterial primers for the 16S rRNA and rpoB genes were used in PCR reactions to amplify DNA extracted from water-soaked (young) and necrotic lesions. The universal fungal oligonucleotide ITS4 was also included to identity the possible presence of fungal structures inside lesions. Positive PCR products from water-soaked lesions, both from naturally and artificially inoculated plants, were produced with bacterial primers, whereas no amplification was observed when ITS4 oligonucleotide was used. On the other hand, DNA amplification with ITS4 primer was observed when DNA was isolated from necrotic (old) lesions. These results reinforced previous report of P. ananatis as the primary pathogen and the hypothesis that fungal species may colonize lesions pre-established by P. ananatis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil organic matter (SOM) extracted under different vegetation types from a Brazilian mangrove (Pai Matos Island, Sao Paulo State) and from three Spanish salt marshes (Betanzos Ria and Corrubedo Natural Parks, Galicia, and the Albufera Natural Park, Valencia) was investigated by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The chemical variation was larger in SOM from the Spanish marshes than in the SOM of the Brazilian mangroves, possibly because the marshes included sites with both tidal and nontidal variation, whereas the mangrove forest underwent just tidal variation. Thus, plant-derived organic matter was better preserved under permanently anoxic environments. Moreover, given the low number of studied profiles and sedimentary-vegetation sequences in both areas, depth trends remain unclear. The chemical data also allow distinction between the contributions of woody and nonwoody vegetation inputs. Soil organic matter decomposition was found to cause: (i) a decrease in lignin contents and a relative increase in aliphatics; (ii) an increase in short-chain aliphatics at the expense of longer ones; (iii) a loss of odd-over-even dominance in alkanes and alkenes; and (iv) an increase in microbial products, including proteins, sterols, short-chain fatty acids, and alkanes. Pyrolysis-gas chromatography/mass spectrometry is a useful tool to study the behavior and composition of SOM in wetland environments such as mangroves and salt marshes. Additional profiles need to be studied for each vegetation type, however, to improve the interpretability of the chemical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the lack of information about the effects of soybean fertilization anticipation and the use of Eleusine coracana (L.) Gaerm. (ANSB Pe-de-galinha 5352) as cover culture, and the need for new techniques for the management of the agro-ecosystem in a more conservationist, sustainable and functional manner the goal of this research was to study the effects of anticipated fertilization on the production of dry matter in E. coracana. The experiments were carried out in an Oxisol, during the growing seasons of 200112002, 200212003 and 200312004, in Piracicaba, SP Brazil (22`50`25""S and 48`01`65""W). The experimental design was of totally randomized blocks and twelve treatments (lev- els of anticipated fertilization) were used with three repetitions. The base fertilization of soybean culture was partially anticipated, in the sowing for the finger-millet crop. Approximately 70 days after sowing, samples of the finger millet plants were collected in order to evaluate the dry matter production and to desiccate them thereafter It is concluded that the anticipation of phosphorus and potassium fertilization of soybean increases the dry matter production of E. coracana; in addition, E. coracana holds a great potential for the production of plant residues and it can be used in culture rotation or in no-tillage production systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PEGylation is one of the most promising and extensively studied strategies for improving the pharmacological properties of proteins as well as their physical and thermal stability. Purified lysozyme obtained from hen egg white by batch mode was modified by PEGylation with methoxypolyethyleneglycol succinimidyl succinato (mPEG-SS, MW 5000). The conjugates produced retained full enzyme activity with the substrate glycol chitosan, independent of degree of enzyme modification, although lysozyme activity with the substrate Micrococcus lysodeikticus was altered according to the degree of modification. The conjugate with a low degree of modification by mPEG-SS retained 67% of its enzyme activity with the M. lysodeikticus substrate. The mPEG-SS was also shown to be a highly reactive polymer. The effects of pH and temperature on PEGylated lysozymes indicated that the conjugate was active over a wide pH range and was stable up to 50 degrees C. This conjugate also showed resistance to proteolytic degradation, remained stable in human serum, and displayed greater antimicrobial activity than native lysozyme against Gram-negative bacteria.