96 resultados para Ultraviolet light trap
Resumo:
Objective: To evaluate whether the type of cola drink (regular or diet) could influence the wear of enamel subjected to erosion followed by brushing abrasion, Method and !Materials: Ten volunteers wore intraoral devices that each had eight bovine enamel blocks divided into four groups; ER, erosion with regular cola; EAR, erosion with regular cola plus abrasion; EL, erosion with light cola; and EAL, erosion with light cola plus abrasion, Each day for 1 week, half of each device was immersed in regular cola for 5 minutes, Then, two blocks were brushed using a fluoridated toothpaste and electric toothbrush for 30 seconds four times daily, Immediately after, the other half of the device was subjected to the same procedure using a light cola, The pH, calcium, phosphorus, and fluoride concentrations of the colas were analyzed using standard procedures, Enamel alterations were measured by profilometry. Data were tested using two-way ANOVA and Bonferroni test (P < .05), Results: Regarding chemical characteristics, light cola presented pH 3.0, 13.7 mg Ca/L, 15.5 mg P/L, and 0.31 mg F/L, while regular cola had pH 2.6, 32.1 mg Ca/L, 1:8.1 mg P/L, and 0.26 mg F/L, The light cola promoted less enamel loss (EL, 0.36 pm; EAL, 0.39 pm) than its regular counterpart (ER, 0.72 pm; EAR, 0.95 pm) for both conditions, There was not a significant difference (P > .05) between erosion and erosion plus abrasion for light cola, However, for regular cola, erosion plus abrasion resulted in higher enamel loss than erosion alone,.nclusion: The data suggest that light cola promoted less enamel wear even when erosion was followed by brushing abrasion, (Quintessence Int 2011;42:xxx-xx)()
Resumo:
Purpose: To evaluate the cytotoxic effects of resin-based light-cured liners on culture of pulp cells. Methods: Discs measuring 4 mill in diameter and 2 mm thick were fabricated from TheraCal (TCMTA), Vitrebond (VIT), and Ultrablend Plus (UBP). These specimens were immersed in serum-free culture medium (DMEM) for 24 hours or 7 days to produce the extracts. After incubating the pulp cells for 72 hours, the extracts were applied on the cells and the cytotoxic effects were determined based on the cell metabolism (MTT), total protein expression and cell morphology (SEM). In the control group, fresh DMEM was used. Data from MTT analysis and protein expression were submitted to Kruskal-Wallis and Mann-Whitney tests at the preset level of significance of 5%. Results: When in contact with the 24-hour extract, TCMTA, VIT, and UBP decreased the cell metabolism by 31.5%, 73.5% and 71.0%, respectively. The total protein expressed by the cells in contact with VIT and UBP was lower than TCMTA and DMEM (Mann-Whitney, P< 0.05). When in contact with the 7-day extract, TCMTA, VIT, and UBP decreased the metabolic activity by 45.9%, 77.1% and 64.4%, respectively. All the liners expressed statistically lower amounts of proteins when compared to the control. A reduction in the number of cells was observed for all liners. The remaining cells from TCMTA group resembled those from the control group while for VIT and UBP the cells presented significant morphological alterations. (Ani J Dent 2009;22:137-142).
Resumo:
Objectives. The purpose of this study was to investigate the effect of light-curing protocol on degree of conversion (DC), volume contraction (C), elastic modulus (E), and glass transition temperature (T(g)) as measured on a model polymer. It was a further aim to correlate the measured values with each other. Methods. Different light-curing protocols were used in order to investigate the influence of energy density (ED), power density (PD), and mode of cure on the properties. The modes of cure were continuous, pulse-delay, and stepped irradiation. DC was measured by Raman micro-spectroscopy. C was determined by pycnometry and a density column. E was measured by a dynamic mechanical analyzer (DMA), and T(g) was measured by differential scanning calorimetry (DSC). Data were submitted to two-and three-way ANOVA, and linear regression analyses. Results. ED, PD, and mode of cure influenced DC, C, E, and T(g) of the polymer. A significant positive correlation was found between ED and DC (r = 0.58), ED and E (r = 0.51), and ED and T(g) (r = 0.44). Taken together, ED and PD were significantly related to DC and E. The regression coefficient was positive for ED and negative for PD. Significant positive correlations were detected between DC and C (r = 0.54), DC and E (r = 0.61), and DC and T(g) (r = 0.53). Comparisons between continuous and pulse-delay modes of cure showed significant influence of mode of cure: pulse-delay curing resulted in decreased DC, decreased C, and decreased T(g). Influence of mode of cure, when comparing continuous and step modes of cure, was more ambiguous. A complex relationship exists between curing protocol, microstructure of the resin and the investigated properties. The overall performance of a composite is thus indirectly affected by the curing protocol adopted, and the desired reduction of C may be in fact a consequence of the decrease in DC. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Introduction: This study evaluated the bond strength of translucent fiber posts to experimentally weakened radicular dentin restored with composite resin and polymerized with different light-exposure time. Methods: Roots of 60 maxillary incisors were used. Twenty-four hours after obturation, the filling materials of root canals were removed to a depth of 12 mm, and 4 groups were randomly formed. In 3 groups, root dentin was flared to produce a space between fiber post and canal walls. In the control group, the roots were not experimentally weakened. The flared roots were bulk restored with composite resin, which was light-activated through the translucent post for 40, 80, or 120 seconds. Posts were cemented, and after 24 hours, all roots were sectioned transversely in the coronal, middle, and apical regions, producing 1-mm-thick slices. Push-out test was performed, and failure modes were observed. Results The quantitative analysis showed significant statistical difference only among groups (P <.001). Comparing the weakened/restored groups, composite light-exposure time did not influence the results. Overall, adhesive failures occurred more frequently than other types of failures. Cohesive failures occurred only in the weakened/restored roots. Conclusions Intracanal root restoration with composite resin and translucent fiber posts provided similar or higher bond strength to dentin than the control group, regardless of the light-exposure time used for polymerization. (J Endod 2009;35:1034-1039)
Resumo:
Objectives: The aim of this study was to assess the fracture resistance of endodontically treated teeth submitted to bleaching with 38% hydrogen peroxide activated by light-emitting diode (LED)-laser system. Methods: Fifty maxillary incisors were endodontically treated, received a zinc phosphate barrier and were embedded in acrylic resin until cemento-enamel junction. The specimens were distributed into five groups (n = 10) according to the number of bleaching sessions: GI, no treatment (control); GII, one session; GIII, two sessions; GIV, three sessions and GV, four sessions. The whitening gel was applied to the buccal surface of the tooth and inside the pulp chamber for three times in each session, followed by LED-laser activation. Specimens were submitted to the fracture resistance test (kN) and data were submitted to the Tukey-Kramer multiple comparisons test. Results: No significant difference (p > 0.05) was found between GI (0.71 +/- 0.30) and GII (0.65 +/- 0.13), which presented the highest strength values to fracture. Groups III (0.35 +/- 0.17), IV (0.23 +/- 0.13) and V (0.38 +/- 0.15) showed lower resistance to fracture (p < 0.01) when compared to GI and GII. Conclusions: The fracture resistance of endodontically treated teeth decreased after two sessions of bleaching with 38% hydrogen peroxide activated by LED-laser system. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The purpose of this in vitro study was to evaluate the Vickers hardness (VHN) of a Light Core (Bisco) composite resin after root reinforcement, according to the light exposure time, region of intracanal reinforcement and lateral distance from the light-transmitting fibre post. Methods: Forty-five 17-mm long roots were used. Twenty-four hours after obturation, the root canals were emptied to a depth of 12 mm and the root dentine was artificially flared to produce a 1 mm space between the fibre post and the canal walls. The roots were bulk restored with the composite resin, which was photoactivated through the post for 40 s (G1, control), 80 s (G2) or 120 s (G3). Twenty-four hours after post-cementation, the specimens were sectioned transversely into three slices at depths of 2, 6 and 10 mm, corresponding to the coronal, middle and apical regions of the reinforced root. Composite VHN was measured as the average of three indentations (100 g/15 s) in each region at lateral distances of 50, 200 and 350 mu m from the cement/post-interface. Results: Three-way analysis of variance (alpha = 0.05) indicated that the factors time, region and distance influenced the hardness and that the interaction time x region was statistically significant (p = 0.0193). Tukey`s test showed that the mean VHN values for G1 (76.37 +/- 8.58) and G2 (74.89 +/- 6.28) differed significantly from that for G3 (79.5 +/- 5.18). Conclusions: Composite resin hardness was significantly lower in deeper regions of root reinforcement and in lateral areas distant from the post. Overall, a light exposure time of 120 s provided higher composite hardness than the shorter times (40 and 80 s). (C) 2008 Elsevier Ltd. All rights reserved.