199 resultados para Swift heavy-ion irradiation
Resumo:
We study the beam-energy and system-size dependence of phi meson production (using the hadronic decay mode phi -> K(+) K(-)) by comparing the new results from Cu + Cu collisions and previously reported Au + Au collisions at root s(NN) = 62.4 and 200 GeV measured in the STAR experiment at RHIC. Data presented in this Letter are from mid-rapidity (vertical bar y vertical bar < 0.5) for 0.4 < p(T) < 5 GeV/c. At a given beam energy, the transverse momentum distributions for phi mesons are observed to be similar in yield and shape for Cu + Cu and Au + Au colliding systems with similar average numbers of participating nucleons. The phi meson yields in nucleus-nucleus collisions, normalized by the average number of participating nucleons, are found to be enhanced relative to those from p + p collisions. The enhancement for phi mesons lies between strange hadrons having net strangeness = 1 (K(-) and <(A)over bar>) and net strangeness = 2 (Xi). The enhancement for phi mesons is observed to be higher at root s(NN) = 200 GeV compared to 62.4 GeV. These observations for the produced phi(s (s) over bar) mesons clearly suggest that, at these collision energies, the source of enhancement of strange hadrons is related to the formation of a dense partonic medium in high energy nucleus-nucleus collisions and cannot be alone due to canonical suppression of their production in smaller systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, we investigate the limitation of the use of strength coefficients on double folding potentials to study the presence of the threshold anomaly in the elastic scattering of halo nuclei at near barrier energies. For this purpose, elastic angular distributions and reaction cross sections for the He-6 on Bi-209 are studied. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The ratio of the psi` over the J psi production cross section in the dielectron channel has been measured in root s = 200 GeV p + p collisions with the PHENIX detector at RHIC. The analysis is based on fitting of the dielectron invariant mass spectra in the area around the J psi and psi` signals in order to extract a ratio psi` over J psi of 0.019 +/- 0.005 (stat) +/- 0.002 (sys) and a fractional feed-down contribution to J psi from psi` of 8.6 +/- 2.5%.
Resumo:
Heavy quark production has been very well studied over the last years both theoretically and experimentally. Theory has been used to study heavy quark production in ep collisions at HERA, in pp collisions at Tevatron and RHIC, in pA and dA collisions at RHIC, and in AA collisions at CERN-SPS and RHIC. However, to the best of our knowledge, heavy quark production in eA has received almost no attention. With the possible construction of a high energy electron-ion collider, updated estimates of heavy quark production are needed. We address the subject from the perspective of saturation physics and compute the heavy quark production cross section with the dipole model. We isolate shadowing and nonlinear effects, showing their impact on the charm structure function and on the transverse momentum spectrum.
Resumo:
We calculate the nuclear cross section for coherent and incoherent vector meson production within the QCD color dipole picture, including saturation effects. Theoretical estimates for scattering on both light and heavy nuclei are given over a wide range of energy.
Resumo:
Objective: The purpose of this study was to evaluate in vitro the Knoop microhardness (Knoop hardness number [KHN]) and the degree of conversion using FT-Raman spectroscopy of a light-cured microhybrid resin composite (Z350-3M-ESPE) Vita shade A3 photopolymerized with a halogen lamp or an argon ion laser. Background Data: Optimal polymerization of resin-based dental materials is important for longevity of restorations in dentistry. Materials and Methods: Thirty specimens were prepared and inserted into a disc-shaped polytetrafluoroethylene mold that was 2.0 mm thick and 3 mm in diameter. The specimens were divided into three groups (n = 10 each). Group 1 (G1) was light-cured for 20 sec with an Optilux 501 halogen light with an intensity of 1000 mW/cm(2). Group 2 (G2) was photopolymerized with an argon laser with a power of 150 mW for 10 sec, and group 3 (G3) was photopolymerized with an argon laser at 200 mW of power for 10 sec. All specimens were stored in distilled water for 24 h at 37 degrees C and kept in lightproof containers. For the KHN test five indentations were made and a depth of 100 mu m was maintained in each specimen. One hundred and fifty readings were obtained using a 25-g load for 45 sec. The degree of conversion values were measured by Raman spectroscopy. KHN and degree of conversion values were obtained on opposite sides of the irradiated surface. KHN and degree of conversion data were analyzed by one-way ANOVA and Tukey tests with statistical significance set at p < 0.05. Results: The results of KHN testing were G1 = 37.428 +/- 4.765; G2 = 23.588 +/- 6.269; and G3 = 21.652 +/- 4.393. The calculated degrees of conversion (DC%) were G1 = 48.57 +/- 2.11; G2 = 43.71 +/- 3.93; and G3 = 44.19 +/- 2.71. Conclusions: Polymerization with the halogen lamp ( G1) attained higher microhardness values than polymerization with the argon laser at power levels of 150 and 200 mW; there was no difference in hardness between the two argon laser groups. The results showed no statistically significant different degrees of conversion for the polymerization of composite samples with the two light sources tested.
Resumo:
Successful coupling of electrochemical preconcentration (EPC) to capillary electrophoresis (CE) with contactless conductivity detection (C(4)D) is reported for the first time. The EPC-CE interface comprises a dual glassy carbon electrode (GCE) block, a spacer and an upper block with flow inlet and outlet, pseudo-reference electrode and a fitting for the CE silica column, consisting of an orifice perpendicular to the surface of a glassy carbon electrode with a bushing inside to ensure a tight press fit. The end of the capillary in contact with the GCE is slant polished, thus defining a reproducible distance from the electrode surface to the column bore. First results with EPC-CE-C(4)D are very promising, as revealed by enrichment factors of two orders of magnitude for Tl, Cu, Pb and Cd ion peak area signals. Detection limits for 10 min deposition time fall around 20 nmol L(-1) with linear calibration curves over a wide range. Besides preconcentration, easy matrix exchange between accumulation and stripping/injection favors procedures like sample cleanup and optimization of pH, ionic strength and complexing power. This was demonstrated for highly saline samples by using a low conductivity buffer for stripping/injection to improve separation and promote field-enhanced sample stacking during electromigration along the capillary. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the automation of a fully electrochemical system for preconcentration, cleanup, separation and detection, comprising the hyphenation of a thin layer electrochemical flow cell with CE coupled with contactless conductivity detection (CE-C(4)D). Traces of heavy metal ions were extracted from the pulsed-flowing sample and accumulated on a glassy carbon working electrode by electroreduction for some minutes. Anodic stripping of the accumulated metals was synchronized with hydrodynamic injection into the capillary. The effect of the angle of the slant polished tip of the CE capillary and its orientation against the working electrode in the electrochemical preconcentration (EPC) flow cell and of the accumulation time were studied, aiming at maximum CE-C(4)D signal enhancement. After 6 min of EPC, enhancement factors close to 50 times were obtained for thallium, lead, cadmium and copper ions, and about 16 for zinc ions. Limits of detection below 25 nmol/L were estimated for all target analytes but zinc. A second separation dimension was added to the CE separation capabilities by staircase scanning of the potentiostatic deposition and/or stripping potentials of metal ions, as implemented with the EPC-CE-C(4)D flow system. A matrix exchange between the deposition and stripping steps, highly valuable for sample cleanup, can be straightforwardly programmed with the multi-pumping flow management system. The automated simultaneous determination of the traces of five accumulable heavy metals together with four non-accumulated alkaline and alkaline earth metals in a single run was demonstrated, to highlight the potentiality of the system.
Resumo:
OBJECTIVE: Removable partial dentures (RPD) require different hygiene care, and association of brushing and chemical cleansing is the most recommended to control biofilm formation. However, the effect of cleansers has not been evaluated in RPD metallic components. The aim of this study was to evaluate in vitro the effect of different denture cleansers on the weight and ion release of RPD. MATERIAL AND METHODS: Five specimens (12x3 mm metallic disc positioned in a 38x18x4 mm mould filled with resin), 7 cleanser agents [Periogard (PE), Cepacol (CE), Corega Tabs (CT), Medical Interporous (MI), Polident (PO), 0.05% sodium hypochlorite (NaOCl), and distilled water (DW) (control)] and 2 cobalt-chromium alloys [DeguDent (DD), and VeraPDI (VPDI)] were used for each experimental situation. One hundred and eighty immersions were performed and the weight was analyzed with a high precision analytic balance. Data were recorded before and after the immersions. The ion release was analyzed using mass spectrometry with inductively coupled plasma. Data were analyzed by two-way ANOVA and Tukey HSD post hoc test at 5% significance level. RESULTS: Statistical analysis showed that CT and MI had higher values of weight loss with higher change in VPDI alloy compared to DD. The solutions that caused more ion release were NaOCl and MI. CONCLUSIONS: It may be concluded that 0.05% NaOCl and Medical Interporous tablets are not suitable as auxiliary chemical solutions for RPD care.
Resumo:
Studies have shown the cariostatic effect of Er,Cr:YSGG (2.78 mm) laser irradiation on human enamel and have suggested its use on caries prevention. However there are still no reports on the intrapulpal temperature increase during enamel irradiation using parameters for caries prevention. The aim of this in vitro study was to evaluate the temperature variation in the pulp chamber during human enamel irradiation with Er,Cr:YSGG laser at different energy densities. Fifteen enamel blocks obtained from third molars (3 x 3 x 3 mm) were randomly assigned to 3 groups (n=5): G1 - Er,Cr:YSGG laser 0.25 W, 20 Hz, 2.84 J/cm², G2 - Er,Cr:YSGG laser 0.50 W, 20 Hz, 5.68 J/cm², G3 - Er,Cr:YSGG laser 0.75 W, 20 Hz, 8.52 J/cm². During enamel irradiation, two thermocouples were fixed in the inner surface of the specimens and a thermal conducting paste was used. One-way ANOVA did not show statistically significant difference among the experimental groups (a=0.05). There was intrapulpal temperature variation <0.1ºC for all irradiation parameters. In conclusion, under the tested conditions, the use of Er,Cr:YSGG laser with parameters set for caries prevention lead to an acceptable temperature increase in the pulp chamber.
Resumo:
The purpose of this in vitro study was to evaluate the effect of neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiation on intracanal dentin surface by SEM analysis and its interference in the apical seal of filled canals. After endodontic treatment procedures, 34 maxillary human incisors were randomly assigned to 2 groups. In the negative control group (n=17), no additional treatment was performed and teeth were filled with vertically condensed gutta-percha; in the laser-treated group (n=17), the root canals were irradiated with Nd:YAG laser (1.5 W, 100 mJ, 15 Hz) before filling as described for the control group. Two specimens of each group were prepared for SEM analysis to evaluate the presence and extent of morphological changes and removal of debris; the other specimens were immersed in 0.5% methylene blue dye (pH 7.2) for 24 h for evaluation of the linear dye leakage at the apical third. SEM analysis of the laser-treated group showed dentin fusion and resolidification without smear layer or debris. The Student’s t-test showed that the laser-treated group had significantly less leakage in apical third than the control group. Within the limitations of this study, it may be concluded that the morphological changes on the apical intraradicular dentin surface caused by Nd:YAG laser resulted in less linear dye apical leakage.
Resumo:
This in vitro study evaluated the temperature of dentures after different microwave irradiation protocols. Two complete dentures (one maxillary and one mandibular denture) were irradiated separately 4 times for each of the following 5 protocols: dentures immersed in water (G1- 6 min, G2- 3 min); dentures kept dry (G3- 6 min); dentures placed in the steam sterilizer (G4- 6 min, G5- 3 min). The final temperature of the dentures was gauged in a thin and in a thick area of each denture with an infrared thermometer. All groups presented an increase in the resin base temperature. The thin areas of the dentures underwent greater heating than the thick areas. There was no significant difference (p>0.05) between the final mean temperatures of dentures immersed in water for 6 (G1) and 3 min (G2). However, the final mean temperatures recorded in G1 and G2 exceeded 71°C and were significantly higher (<0.001) than the final mean temperatures recorded in the other groups. It may be concluded that denture base resins subjected to microwave irradiation immersed in water may be exposed to deleterious temperatures.
Resumo:
Amyloglucosidase enzyme was produced by Aspergillus niger NRRL 3122 from solid-state fermentation, using deffated rice bran as substrate. The effects of process parameters (pH, temperature) in the equilibrium partition coefficient for the system amyloglucosidase - resin DEAE-cellulose were investigated, aiming at obtaining the optimum conditions for a subsequent purification process. The highest partition coefficients were obtained using 0.025M Tris-HCl buffer, pH 8.0 and 25ºC. The conditions that supplied the highest partition coefficient were specified, the isotherm that better described the amyloglucosidase process of adsorption obtained. It was observed that the adsorption could be well described by Langmuir equation and the values of Qm and Kd estimated at 133.0 U mL-1 and 15.4 U mL-1, respectively. From the adjustment of the kinetic curves using the fourth-order Runge-Kutta algorithm, the adsorption (k1) and desorption (k2) constants were obtained through optimization by the least square procedure, and the values calculated were 2.4x10-3 mL U-1 min-1 for k1 and 0.037 min-1 for k2 .
Resumo:
The vials filled with Fricke solutions were doped with increasing concentrations of Photogem®, used in photodynamic therapy. These vials were then irradiated with low-energy X-rays with doses ranging from 5 to 20 Gy. The conventional Fricke solution was also irradiated with the same doses. The concentration of ferric ions for the Fricke and doped-Fricke irradiated solutions were measured in a spectrophotometer at 220 to 340 nm. The results showed that there was an enhancement in the response of the doped-Fricke solution, which was proportional to the concentration of the photosensitizer. The use of such procedure for studying the radiosensitizing property of photosensitizers based on the production of free radicals is also discussed.
Resumo:
This paper examines the role of parent rock, pedogenetic processes and airborne pollution in heavy metal accumulation in soils from a remote oceanic island, Fernando de Noronha, Brazil. We studied five soil profiles developed from different volcanic rocks. Mineralogical composition and total concentrations of major and trace elements were determined in 43 samples. The obtained concentrations range for heavy metals were: Co: 26-261 ppm; Cu: 35-97 ppm; Cr: 350-1446 ppm; Ni: 114-691 ppm; Zn: 101-374 ppm; Hg: 2-150 ppb. The composition of soils is strongly affected by the geochemical character of the parent rock. Pedogenesis appears to be responsible for the accumulation of Zn, Co, and, to a lesser extent, of Ni and Cu, in the upper, Mn- and organic carbon-enriched horizons of the soil profiles. Pedogenic influence may also explain the relationship observed between Cr and the Fe. Hg is likely to have been added to the soil profile by long-range atmospheric transport. Its accumulation in the topsoil was further favoured by the formation of stable complexes with organic matter. Clay minerals do not appear to play an important role in the fixation of heavy metals.