97 resultados para Role Models


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A full dimensional quasiclassical trajectory study of the OH+SO reaction is presented with the aim of investigating the role of the reactants rotational energy in the reactivity. Different energetic combinations with one and both reactants rotationally excited are studied. A passive method is used to correct zero-point-energy leakage in the classical calculations. The reactive cross sections, for each combination, are calculated and fitted to a capturelike model combined with a factor accounting for recrossing effects. Reactivity decreases as rotational energy is increased in any of both reactants. This fact provides a theoretical support for the experimental dependence of the rate constant on temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that the common singularities present in generic modified gravity models governed by actions of the type S = integral d(4)x root-gf(R, phi, X). with X = -1/2 g(ab)partial derivative(a)phi partial derivative(b)phi, are essentially the same anisotropic instabilities associated to the hypersurface F(phi) = 0 in the case of a nonminimal coupling of the type F(phi)R, enlightening the physical origin of such singularities that typically arise in rather complex and cumbersome inhomogeneous perturbation analyses. We show, moreover, that such anisotropic instabilities typically give rise to dynamically unavoidable singularities, precluding completely the possibility of having physically viable models for which the hypersurface partial derivative f/partial derivative R = 0 is attained. Some examples are explicitly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, electron paramagnetic resonance, photoluminescence (PL) emission, and quantum mechanical calculations were used to observe and understand the structural order-disorder of CaTiO(3), paying special attention to the role of oxygen vacancy. The PL phenomenon at room temperature of CaTiO(3) is directly influenced by the presence of oxygen vacancies that yield structural order-disorder. These oxygen vacancies bonded at Ti and/or Ca induce new electronic states inside the band gap. Ordered and disordered CaTiO(3) was obtained by the polymeric precursor method. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3190524]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma(tau)=3/2). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma(tau)=1.780 +/- 0.005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of laser glasses in the system (Y(2)O(3))(0.2){(Al(2)O(3))(x))(B(2)O(3))(0.8-x)} (0.15 <= x <= 0.40) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as electron spin echo envelope modulation (ESEEM) of Yb-doped samples. The latter technique has been applied for the first time to an aluminoborate glass system. (11)B magic-angle spinning (MAS)-NMR spectra reveal that, while the majority of the boron atoms are three-coordinated over the entire composition region, the fraction of three-coordinated boron atoms increases significantly with increasing x. Charge balance considerations as well as (11)B NMR lineshape analyses suggest that the dominant borate species are predominantly singly charged metaborate (BO(2/2)O(-)), doubly charged pyroborate (BO(1/2)(O(-))(2)), and (at x = 0.40) triply charged orthoborate groups. As x increases along this series, the average anionic charge per trigonal borate group increases from 1.38 to 2.91. (27)Al MAS-NMR spectra show that the alumina species are present in the coordination states four, five and six, and the fraction of four-coordinated Al increases markedly with increasing x. All of the Al coordination states are in intimate contact with both the three-and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, non-segregated glass structure. (89)Y solid state NMR spectra show a significant chemical shift trend, reflecting that the second coordination sphere becomes increasingly ""aluminate-like'' with increasing x. This conclusion is supported by electron spin echo envelope modulation (ESEEM) data of Yb-doped glasses, which indicate that both borate and aluminate species participate in the medium range structure of the rare-earth ions, consistent with a random spatial distribution of the glass components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emission energy dependence of the photoluminescence (PL) decay rate at room temperature has been studied in Si nanoclusters (Si-ncl) embedded in Si oxide matrices obtained by thermal annealing of substoichiometric Si oxide layers Si(y)O(1-y), y=(0.36,0.39,0.42), at various annealing temperatures (T(a)) and gas atmospheres. Raman scattering measurements give evidence for the formation of amorphous Si-ncl at T(a)=900 degrees C and of crystalline Si-ncl for T(a)=1000 degrees C and 1100 degrees C. For T(a)=1100 degrees C, the energy dispersion of the PL decay rate does not depend on sample fabrication conditions and follows previously reported behavior. For lower T(a), the rate becomes dependent on fabrication conditions and less energy dispersive. The effects are attributed to exciton localization and decoherence leading to the suppression of quantum confinement and the enhancement of nonradiative recombination in disordered and amorphous Si-ncl. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3457900]