133 resultados para Reversed ideation
Resumo:
BACKGROUND AND PURPOSE Mounting evidence implicates matrix metalloproteinase (MMP) in the vascular dysfunction and remodelling associated with hypertension. We tested the hypothesis that treatment with pyrrolidine dithiocarbamate (PDTC), which interferes with NF-kappa B-induced MMPs gene transcription, could exert antihypertensive effects, prevent MMP-2 and MMP-9 up-regulation, and protect against the functional alterations and vascular remodelling of two-kidney, one clip (2K1C) hypertension. EXPERIMENTAL APPROACH Sham-operated or hypertensive rats were treated with vehicle or PDTC (100 mg.Kg(-1).day(-1)) by gavage for 8 weeks. Systolic blood pressure (SBP) was monitored weekly. Aortic rings were isolated to assess endothelium-dependent relaxations. Quantitative morphometry of structural alterations of the aortic wall was carried out in haematoxylin/eosin sections. Formation of vascular reactive oxygen species (ROS), and inducible (i) NOS and phosphorylated-p65 NF-kappa B subunit expression were measured in the aortas. MMP-2 and MMP-9 aortic levels and gelatinolytic activity were determined by gelatin and in situ zymography and by immunofluorescence. KEY RESULTS Treatment with PDTC attenuated the increases in SBP and prevented the endothelial dysfunction associated with 2K1C hypertension. Moreover, PDTC reversed the vascular aortic remodelling, the increases in aortic ROS levels and in iNOS and phosphorylated-p65 NF-kappa B expression found in 2K1C rats. These effects were associated with attenuation of 2K1C up-regulation of aortic MMP-2 and MMP-9 levels and gelatinolytic activity. CONCLUSION AND IMPLICATIONS These findings suggest that PDTC down-regulates vascular MMPs and ameliorates vascular dysfunction and remodelling in renovascular hypertension, thus providing evidence supporting the suggestion that PDTC is probably a good candidate to be used to treat hypertension.
Resumo:
Background and purpose: Increased oxidative stress and up-regulation of matrix metalloproteinases (MMPs) may cause structural and functional vascular changes in renovascular hypertension. We examined whether treatment with spironolactone (SPRL), hydrochlorothiazide (HCTZ) or both drugs together modified hypertension-induced changes in arterial blood pressure, aortic remodelling, vascular reactivity, oxidative stress and MMP levels and activity, in a model of renovascular hypertension. Experimental approach: We used the two-kidney,one-clip (2K1C) model of hypertension in Wistar rats. Sham-operated or hypertensive rats were treated with vehicle, SPRL (25 mg center dot kg-1 center dot day-1), HCTZ (20 mg center dot kg-1 center dot day-1) or a combination for 8 weeks. Systolic blood pressure was monitored weekly. Aortic rings were isolated to assess endothelium-dependent and -independent relaxations. Morphometry of the vascular wall was carried out in sections of aorta. Aortic NADPH oxidase activity and superoxide production were evaluated. Formation of reactive oxygen species was measured in plasma as thiobarbituric acid-reactive substances. Aortic MMP-2 levels and activity were determined by gelatin and in situ zymography, fluorimetry and immunohistochemistry. Key results: Treatment with SPRL, HCTZ or the combination attenuated 2K1C-induced hypertension, and reversed the endothelial dysfunction in 2K1C rats. Both drugs or the combination reversed vascular aortic remodelling induced by hypertension, attenuated hypertension-induced increases in oxidative stress and reduced MMP-2 levels and activity. Conclusions and implications: SPRL or HCTZ, alone or combined, exerted antioxidant effects, and decreased renovascular hypertension-induced MMP-2 up-regulation, thus improving the vascular dysfunction and remodelling found in this model of hypertension.
Resumo:
Tonic immobility (TI) is a temporary state of profound motor inhibition induced by situations that generate intense fear, with the objective of protecting an animal from attacks by predators. A preliminary study by our group demonstrated that microinjection into the basolateral nucleus of the amygdala (BLA) of an agonist to 5-HT(1A) and 5-HT(2) receptors promoted a decrease in TI duration. In the current study, the effects of GABAergic stimulation of the BLA and the possible interaction between GABA(A) and 5-HT(2) receptors on TI modulation were investigated. Observation revealed that GABAergic agonist muscimol (0.26 nmol) reduced the duration of TI episodes, while microinjection of the GABAergic antagonist bicuculline (1 nmol) increased TI duration. Additionally, microinjection of 5-HT(2) agonist receptors (alpha-methyl-5-HT, 0.32 nmol) into the BLA decreased TI duration, an effect reversed by pretreatment with bicuculline (at the dose that had no effect per se, 0.2 nmol). Moreover, the activation of GABA(A) and 5-HT(2) receptors in the BLA did not alter the spontaneous motor activity in the open field test. These experiments demonstrated that the activation of GABA(A) and 5-HT(2) receptors of the BLA possibly produce a reduction in unconditioned fear that decreases the TI duration in guinea pigs, but this is not due to increased spontaneous motor activity, which could affect a TI episode nonspecifically. Furthermore, these results suggest an interaction between GABAergic and serotoninergic mechanisms mediated by GABA(A) and 5-HT(2) receptors. In addition, the GABAergic circuit of the BLA presents a tonic inhibitory influence on TI duration. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Abnormal matrix metalloproteinases (MMPs) activity causes cardiovascular diseases. Because hyperglycemia increase MMPs activities through increased oxidative stress. we hypothesized that antioxidant effects produced by lercanidipine could attenuate the increases in MMP-2 expression/activity in diabetic rats. Control and diabetic (alloxan-induced diabetes) rats received lercanidipine 2.5 mg/kg/day (or tap water) starting three weeks after alloxan (or vehicle) injections. Blood pressure was monitored weekly. After six weeks of treatment, vascular reactivity and structural changes were assessed in aortic rings. MMP-2 levels were determined by gelatin zymography, and MMP-2/tissue inhibitor of metalloproteinases (TIMP)-2 mRNA levels were determined by quantitative real time RT-PCR. Plasma thiobarbituric acid reactive substances concentrations were determined by fluorimetry. Lercanidipine produced antihypertensive effects (201 +/- 5 vs. 163 +/- 7 mm Hg in diabetic rats untreated and treated with lercaniclipine, respectively; P < 0.01) and reversed the impairment in endothelium-dependent vasorelaxation in diabetic rats. Increased MMP-2 and Pro-MMP-2 levels were found in the aortas of diabetic rats (both P < 0.001). Lercandipine attenuated the increases in oxidative stress and in MMP-2 (both P < 0.05). While diabetes induced no major structural changes, it caused a 16-fold increase in the ratio of MMP-2/TIMP-2 mRNA expression, which was completely reversed by lercanidipine (both P < 0.001). These results show that antioxidant and beneficial vascular effects produced by lercanidipine in diabetic rats are associated with reversion of the imbalance in vascular MMP-2MMP-2 expression. (C) 2008 Published by Elsevier B.V.
Resumo:
Tenofovir disoproxil fumarate (TDF) is a first-line drug used in patients with highly active retroviral disease; however, it can cause renal failure associated with many tubular anomalies that may be due to down regulation of a variety of ion transporters. Because rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist induces the expression of many of these same transporters, we tested if the nephrotoxicity can be ameliorated by its use. High doses of TDF caused severe renal failure in rats accompanied by a reduction in endothelial nitric-oxide synthase and intense renal vasoconstriction; all of which were significantly improved by rosiglitazone treatment. Low-dose TDF did not alter glomerular filtration rate but produced significant phosphaturia, proximal tubular acidosis, polyuria and a reduced urinary concentrating ability. These alterations were caused by specific downregulation of the sodium-phosphorus cotransporter, sodium/hydrogen exchanger 3 and aquaporin 2. A Fanconi`s-like syndrome was ruled out as there was no proteinuria or glycosuria. Rosiglitazone reversed TDF-induced tubular nephrotoxicity, normalized urinary biochemical parameters and membrane transporter protein expression. These studies suggest that rosiglitazone treatment might be useful in patients presenting with TFV-induced nephrotoxicity especially in those with hypophosphatemia or reduced glomerular filtration rate.
Resumo:
We report our pediatric experience with lacosarnide, a new antiepileptic drug, approved by the US Food and Drug Administration as adjunctive therapy in focal epilepsy in patients more than 17 years old. We retrospectively reviewed charts for lacosamide use and seizure frequency outcome in patients with focal epilepsy (Wilcoxon signed rank test). Sixteen patients (7 boys) were identified (median dose 275 mg daily, 4.7 mg/kg daily; mean age 14.9 years, range 8-21 years). Patients were receiving a median of 2 antiepileptic drugs (interquartile range [IQR] 1.7-3) in addition to having undergone previous epilepsy surgery (n = 3), vagus nerve stimulation (n = 9), and ketogenic diet (n = 3). Causes included structural (encephalomalacia and diffuse encephalitis, 1 each; stroke in 2) and genetic abnormalities (Aarskog and Rett syndromes, 1 each) or cause not known (n = 10). Median seizure frequency at baseline was 57 per month (IQR 7-75), and after a median follow-up of 4 months (range 1-13 months) of receiving lacosamide, it was 12.5 per month (IQR 3-75), (P < 0.01). Six patients (37.5%; 3 seizure free) were classified as having disease that responded to therapy (>= 50% reduction seizure frequency) and 10 as having disease that did not respond to therapy (<50% in 3; increase in 1; unchanged in 6). Adverse events (tics, behavioral disturbance, seizure worsening, and depression with suicidal ideation in 1 patient each) prompted lacosamide discontinuation in 4/16 (25%). This retrospective study of 16 children with drug-resistant focal epilepsy demonstrated good response to adjunctive lacosamide therapy (median seizure reduction of 39.6%; 37.5% with >= 50% seizure reduction) without severe adverse events. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Paleomagnetic and rockmagnetic data are reported for the Floresta Formation (Santa Fe Group) of the Sanfranciscana Basin, central Brazil. This formation represents the Permo-Carboniferous glacial record of the basin and comprises the Brocoto (diamictites and flow diamictites), Brejo do Arroz (red sandstones and shales with dropstones and invertebrate trails), and Lavado (red sandstones) members, which crop out near the cities of Santa Fe de Minas and Canabrava, Minas Gerais State. Both Brejo do Arroz and Lavado members were sampled in the vicinities of the two localities. Alternating field and thermal demagnetizations of 268 samples from 76 sites revealed reversed components of magnetization in all samples in accordance with the Permo-Carboniferous Reversed Superchron. The magnetic carriers are magnetite and hematite with both minerals exhibiting the same magnetization component, suggesting a primary origin for the remanence. We use the high-quality paleomagnetic pole for the Santa Fe Group (330.9 degrees E 65.7 degrees S; N = 60; alpha(95) = 4.1 degrees; k = 21) in a revised late Carboniferous to early Triassic apparent polar wander path for South America. On the basis of this result it is shown that an early Permian Pangea A-type fit is possible if better determined paleomagnetic poles become available.
Resumo:
A new acylamino acid, bunodosine 391 (BDS 391), was isolated from the venom of the sea anemone Bunodosoma cangicum. The structure was elucidated by spectroscopic analyses (2D NMR, ESIMS/MS) and verified by its synthesis. Intraplantar injection of BDS 391 into the hind paw of a rat induced a potent analgesic effect. This effect was not altered by naloxone (an opioid receptor antagonist), but was completely reversed by methysergide (a serotonin receptor antagonist), indicating that the effect is mediated by activation of serotonin receptors:
Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes
Resumo:
Aims Thyroid hormone (TH) rapidly relaxes vascular smooth muscle cells (VSMCs). However, the mechanisms involved in this effect remain unclear. We hypothesize that TH-induced rapid vascular relaxation is mediated by VSMC-derived nitric oxide (NO) production and is associated with the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signalling pathway. Methods and results NO levels were determined using a NO-specific fluorescent dye (DAF-2) and nitrite (NO(2)) levels. Expression of NO synthase (NOS) isoforms and proteins of the PI3K/Akt pathway was determined by both western blotting and immunocytochemistry. Myosin light chain (MLC) phosphorylation levels were also investigated by western blotting. Exposure of cultured VSMCs from rat thoracic aortas to triiodothyronine (T3) resulted in a significant decrease of MLC phosphorylation levels. T3 also induced a rapid increase in Akt phosphorylation and increased NO production in a dose-dependent manner (0.001-1 mu M). VSMCs stimulated with T3 for 30 min showed an increase in the expression of all three NOS isoforms and augmented NO production, effects that were prevented by inhibitors of PI3K. Vascular reactivity studies showed that vessels treated with T3 displayed a decreased response to phenylephrine, which was reversed by NOS inhibition. These data suggest that T3 treatment induces greater generation of NO both in aorta and VSMCs and that this phenomenon is endothelium independent. In addition, these findings show for the first time that the PI3K/Akt signalling pathway is involved in T3-induced NO production by VSMCs, which occurs with expressive participation of inducible and neuronal NOS. Conclusion Our data strongly indicate that T3 causes NO-dependent rapid relaxation of VSMC and that this effect is mediated by the PI3K/Akt signalling pathway.
Resumo:
Oral health complications in diabetes include decreased salivary secretion. The SLC5A1 gene encodes the Na(+)-glucose cotransporter SGLT1 protein, which not only transports glucose, but also acts as a water channel. Since SLC5A1 expression is altered in kidneys of diabetic subjects, we hypothesize that it could also be altered in salivary glands, contributing to diabetic dysfunction. The present study shows a diabetes-induced decrease (p < 0.001) in salivary secretion, which was accompanied by enhanced (p < 0.05) SGLT1 mRNA expression in parotid (50%) and submandibular (30%) glands. Immunohistochemical analysis of parotid gland of diabetic rats revealed that SGLT1 protein expression increased in the luminal membrane of ductal cells, which can stimulate water reabsorption from primary saliva. Furthermore, SGLT1 protein was reduced in myoepithelial cells of the parotid from diabetic animals, and that, by reducing cellular contractile activity, might also be related to reduced salivary flux. Six-day insulin-treated diabetic rats reversed all alterations. In conclusion, diabetes increases SLC5A1 gene expression in salivary glands, increasing the SGLT1 protein content in the luminal membrane of ductal cells, which, by increasing water reabsorption, might explain the diabetes-induced decrease in salivary secretion.
Resumo:
Leite-Dellova DC, Oliveira-Souza M, Malnic G, Mello-Aires M. Genomic and nongenomic dose-dependent biphasic effect of aldosterone on Na(+)/H(+) exchanger in proximal S3 segment: role of cytosolic calcium. Am J Physiol Renal Physiol 295: F1342-F1352, 2008. First published August 20, 2008; doi:10.1152/ajprenal.00048.2008.-The effects of aldosterone on the intracellular pH recovery rate (pHirr) via Na(+)/H(+) exchanger and on the [Ca(2+)](i) were investigated in isolated rat S3 segment. Aldosterone [10(-12), 10(-10), or 10(-8) M with 1-h, 15- or 2-min preincubation (pi)] caused a dose-dependent increase in the pHirr, but aldosterone (10(-6) M with 1-h, 15- or 2-min pi) decreased it (these effects were prevented by HOE694 but not by S3226). After 1 min of aldosterone pi, there was a transient and dose-dependent increase of the [Ca(2+)](i) and after 6-min pi there was a new increase of [Ca(2+)](i) that persisted after 1 h. Spironolactone, actinomycin D, or cycloheximide did not affect the effects of aldosterone (15 -or 2-min pi) but inhibited the effects of aldosterone (1-h pi) on pHirr and on [Ca(2+)](i). RU 486 prevented the stimulatory effect of aldosterone (10(-12) M, 15 -or 2-min pi) on both parameters and maintained the inhibitory effect of aldosterone (10(-6) M, 15- or 2-min pi) on the pHirr but reversed its stimulatory effect on the [Ca(2+)](i) to an inhibitory effect. The data indicate a genomic (1 h, via MR) and a nongenomic action (15 or 2 min, probably via GR) on [Ca(2+)](i) and on the basolateral NHE1 and are compatible with stimulation of the NHE1 by increases in [Ca(2+)](i) in the lower range (at 10(-12) M aldosterone) and inhibition by increases at high levels (at 10(-6) M aldosterone) or decreases in [Ca(2+)](i) (at 10(-6) M aldosterone plus RU 486).
Resumo:
Coordinated proliferation and differentiation of progenitor cells is the base for production of appropriate numbers of neurons and glia during neuronal development in order to establish normal brain functions. We have used murine embryonal carcinoma P19 cells as an in vitro model for early differentiation to study participation of nicotinic (nAChR) and muscarinic acetylcholine (mAChR) receptors in the proliferation of neural progenitor cells and their differentiation to neurons. We have previously shown that functional nicotinic acetylcholine receptors (nAChRs) already expressed in embryonic cells mediate elevations in cytosolic free calcium concentration ([Ca2+](i)) via calcium influx through nAChR channels whereas intracellular stores contribute to nAChR- and mAChR-mediated calcium fluxes in differentiated cells [Resende et al., Cell Calcium 43 (2008) 107-121]. In the present study, we have demonstrated that nicotine provoked inhibition of proliferation in embryonic cells as determined by BrdU labeling. However, in neural progenitor cells nicotine stimulated proliferation which was reversed in the presence of inhibitors of calcium mobilization from intracellular stores, indicating that liberation of intracellular calcium contributed to this proliferation induction. Muscarine induced proliferation stimulation in progenitor cells by activation of G alpha(q/11)-coupled M-1, M-3 and M-5 receptors and intracellular calcium stores, whereas G alpha(i/o)-protein coupled M-2 receptor activity mediated neuronal differentiation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Mutations in Na+-glucose transporters (SGLT)-2 and hepatocyte nuclear factor (HNF)-1 alpha genes have been related to renal glycosuria and maturity-onset diabetes of the young 3, respectively. However, the expression of these genes have not been investigated in type 1 and type 2 diabetes. Here in kidney of diabetic rats, we tested the hypotheses that SGLT2 mRNA expression is altered; HNF-1 alpha is involved in this regulation; and glycemic homeostasis is a related mechanism. The in vivo binding of HNF-1 alpha into the SGLT2 promoter region in renal cortex was confirmed by chromatin immunoprecipitation assay. SGLT2 and HNF-1 alpha mRNA expression (by Northern and RT-PCR analysis) and HNF-1 binding activity of nuclear proteins (by EMSA) were investigated in diabetic rats and treated or not with insulin or phlorizin (an inhibitor of SGLT2). Results showed that diabetes increases SGLT2 and HNF-1 alpha mRNA expression (similar to 50%) and binding of nuclear proteins to a HNF-1 consensus motif (similar to 100%). Six days of insulin or phlorizin treatment restores these parameters to nondiabetic-rat levels. Moreover, both treatments similarly reduced glycemia, despite the differences in plasma insulin and urinary glucose concentrations, highlighting the plasma glucose levels as involved in the observed modulations. This study shows that SGLT2 mRNA expression and HNF-1 alpha expression and activity correlate positively in kidney of diabetic rats. It also shows that diabetes-induced changes are reversed by lowering glycemia, independently of insulinemia. Our demonstration that HNF-1 alpha binds DNA that encodes SGLT2 supports the hypothesis that HNF-1 alpha, as a modulator of SGLT2 expression, may be involved in diabetic kidney disease.
Resumo:
Motor cortex stimulation (MCS) has been used to treat patients with neuropathic pain resistant to other therapeutic approaches; however, the mechanisms of pain control by MCS are still not clearly understood. We have demonstrated that MCS increases the nociceptive threshold of naive conscious rats, with opioid participation. In the present study, the effect of transdural MCS on neuropathic pain in rats subjected to chronic constriction injury of the sciatic nerve was investigated. In addition, the pattern of neuronal activation, evaluated by Fos and Zif268 immunolabel, was performed in the spinal cord and brain sites associated with the modulation of persistent pain. MCS reversed the mechanical hyperalgesia and allodynia induced by peripheral neuropathy. After stimulation, Fos immunoreactivity (Fos-IR) decreased in the dorsal horn of the spinal cord and in the ventral posterior lateral and medial nuclei of the thalamus, when compared to animals with neuropathic pain. Furthermore, the MCS increased the Fos-IR in the periaqueductal gray, the anterior cingulate cortex and the central and basolateral amygdaloid nuclei. Zif268 results were similar to those obtained for Fos, although no changes were observed for Zif268 in the anterior cingulate cortex and the central amygdaloid nucleus after MCS. The present findings suggest that MCS reverts neuropathic pain phenomena in rats, mimicking the effect observed in humans, through activation of the limbic and descending pain inhibitory systems. Further investigation of the mechanisms involved in this effect may contribute to the improvement of the clinical treatment of persistent pain. (c) 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.
Resumo:
When allowed to choose between different macronutrients, most animals display a strong attraction toward carbohydrates compared with proteins. It remains uncertain, however, whether this food selection pattern depends primarily on the sensory properties intrinsic to each nutrient or, alternatively, metabolic signals can act independently of the hedonic value of sweetness to stimulate elevated sugar intake. Here we show that Trpm5(-/-) mice, which lack the cellular mechanisms required for sweet and several forms of L-amino acid taste transduction, develop a robust preference for D-glucose compared with isocaloric L-serine independently of the perception of sweetness. Moreover, a close relationship was found between glucose oxidation and taste-independent nutrient intake levels, with animals increasing intake as a function of glucose oxidation rates. Furthermore, microdialysis measurements revealed nutrient-specific dopaminergic responses in accumbens and dorsal striatum during intragastric infusions of glucose or serine. Specifically, intragastric infusions of glucose induced significantly higher levels of dopamine release compared with isocaloric serine in both ventral and dorsal striatum. Intragastric stimulation of dopamine release seemed to depend on glucose utilization, because administration of an anti-metabolic glucose analog resulted in lower dopamine levels in striatum, an effect that was reversed by intravenous glucose infusions. Together, our findings suggest that carbohydrate-specific preferences can develop independently of taste quality or caloric load, an effect associated with the ability of a given nutrient to regulate glucose metabolism and stimulate brain dopamine centers.