247 resultados para Pea lectin gene
Resumo:
The genetic context of the bla(IMP-1) gene was evaluated in 9 Klebsiella pneumoniae isolates recovered from 2 hospitals in Sao Paulo, Brazil. All isolates harbored a copy of In86 carrying bla(Imp-1), aac(6`)-31, and aadAl. Eight strains from the same hospital also carried another class I integron harboring a new trimethoprim resistance gene (dfr23) that was chromosomally embedded. In86 was likely to be in a 30-kb nontransferable plasmid and was flanked upstream by a sequence identical to one identified in an IMP-1-producing Pseudomonas putida isolate. The bla(IMP-1)-carrying integron In86 was recently reported from nonfermentative bacilli isolated in Sao Paulo. These isolates appear to be the Source of this integron now acquired by K. pneumoniae strains from different hospitals in the same city. Metallo-beta-lactamase production is still rare among Enterobacteriaceae isolates in Brazil, but the acquisition of genetic structures carrying these mobile resistance determinants is worrisome and could lead to an increase in the prevalence of these phenotypes of resistance. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background: The methylenetetrahydrofolate reductase (MTHFR), glutamate carboxypeptidase II (GCPII) and reduced folate carrier (RFC1) gene polymorphisms were associated with folate status. We investigated the effects of these polymorphisms on serum folate (SF) and folate-related metabolites in mothers and their neonates. Methods: Cobalamin (Cbl), SF, total homocysteine (tHcy), methylmalonic acid (MMA), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) were measured in 275 healthy women and their neonates. MTHFR C677T, GCPII C1561T and RFC1 A80G polymorphisms were determined by PCR-RFLP. Results: Maternal tHcy was affected individually by MTHFR C677T and GCPII C1561T polymorphisms and by combined genotypes MTHFR 677TT/GCPII 1561CC and MTHFR 677TT/RFC1 80AG. The MTHFR and RFC1 polymorphisms were not associated with variations in vitamins or SAM, SAH and MMA in neonates. Neonatal tHcy was predicted directly by maternal tHcy and inversely by maternal SF, neonatal Cbl and neonatal RFC1 80G allele (AG+GG genotypes). Maternal MMA and SAM/SAH were predicted by creatinine and Cbl, respectively. Neonatal MMA was predicted by maternal MMA and GCPII 1561T allele (CT+TT genotypes) and by neonatal Cbl. Conclusions: Maternal tHcy was affected by MTHFR C677T, RFC1 A80G and GCPII C1561T polymorphisms. Maternal GCPII C1561T variant was associated with neonatal MMA. Neonatal RFC1 A80G polymorphism influenced tHcy in neonates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objectives: To examine the association between methylenetetrahydrofolate reductase (MTHFR) (C677T and A1298C), methionine synthase (MTR) A2756G and methionine synthase reductase (MTRR) A66G gene polymorphisms and total homocysteine (tHcy), methylmalonic acid (MMA) and S-adenosylmethionine/ S-adenosylhomocysteine (SAM/SAH) levels; and to evaluate the potential interactions with folate or cobalamin (Cbl) status. Subjects/ Methods: Two hundred seventy-five healthy women at labor who delivered full-term normal babies. Cbl, folate, tHcy, MMA, SAM and SAH were measured in serum specimens. The genotypes for polymorphisms were determined by PCR-restriction fragment length polymorphism ( RFLP). Results: Serum folate, MTHFR 677T allele and MTR 2756AA genotypes were the predictors of tHcy levels in pregnant women. Serum Cbl and creatinine were the predictors of SAM/SAH ratio and MMA levels, respectively. The gene polymorphisms were not determinants for MMA levels and SAM/SAH ratios. Low levels of serum folate were associated with elevated tHcy in pregnant women, independently of the gene polymorphisms. In pregnant women carrying MTHFR 677T allele, or MTHFR 1298AA or MTRR 66AA genotypes, lower Cbl levels were associated with higher levels of tHcy. Lower SAM/SAH ratio was found in MTHFR 677CC or MTRR A2756AA genotypes carriers when Cbl levels were lower than 142 pmol/l. Conclusions: Serum folate and MTHFR C677T and MTR A2576G gene polymorphisms were the determinants for tHcy levels. The interaction between low levels of serum Cbl and MTHFR (C677T or A1298C) or MTRR A66G gene polymorphisms was associated with increased tHcy.
Resumo:
Background: The transcription factors SREBP1 and SCAP are involved in intracellular cholesterol homeostasis. Polymorphisms of these genes have been associated with variations on serum lipid levels and response to statins that are potent cholesterol-lowering drugs. We evaluated the effects of atorvastatin on SREBF1a and SCAP mRNA expression in peripheral blood mononuclear cells (PBMC) and a possible association with gene polymorphisms and lowering-cholesterol response. Methods: Fifty-nine hypercholesterolemic patients were treated with atorvastatin (10 mg/day for 4 weeks). Serum lipid profile and mRNA expression in PBMC were assessed before and after the treatment. Gene expression was quantified by real-time PCR using GAPD as endogenous reference and mRNA expression in HepG2 cells as calibrator. SREBF1 -36delG and SCAP A2386G polymorphisms were detected by PCR-RFLP. Results: Our results showed that transcription of SREBF1a and SCAP was coordinately regulated by atorvastatin (r=0.595, p<0.001), and that reduction in SCAP transcription was associated with the 2386AA genotype (p=0.019). Individuals who responded to atorvastatin with a downregulation of SCAP had also a lower triglyceride compared to those who responded to atorvastatin with an upregulation of SCAP. Conclusion: Atorvastatin has differential effects on SREBF1a and SCAP mRNA expression in PBMC that are associated with baseline transcription levels, triglycerides response to atorvastatin and SCAP A2386G polymorphism. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Since Staphylococcus aureus can cause several types of diseases, the development of antibiotic resistance poses an even greater threat to public health. S. aureus is known to possess the adaptive capability to promptly respond to antibiotics, making it resistant and increasingly difficult to treat; methicillin-resistant strains of S. aureus are a major concern with regard to this species. Previous studies reported the identification of methicillin-resistant S. aureus in food, demonstrating that this can represent a source of S. aureus which may carry the mecA gene. Fifty-seven S. aureus isolates, previously obtained from different types of food, were screened by polymerase chain reaction with specific primers for the mecA gene, which mediates methicillin resistance. Five (9%) isolates showed the presence of mecA gene, demonstrating that food may contain microorganisms possessing resistance genes. This study emphasizes the need to include food as a possible source of S. aureus carrying mecA gene and the need to monitor these products. Moreover, this is the first report of the presence of mecA genes in S. aureus isolated from ready-to-eat food in Brazil and Latin America.
Resumo:
This study investigated the effects of atorvastatin on ABCB1 and ABCC1 mRNA expression on peripheral blood mononuclear cells (PBMC) and their relationship with gene polymorphisms and lowering-cholesterol response. one hundred and thirty-six individuals with hypercholesterolemia were selected and treated with atorvastatin (10 mg/day/4 weeks). Blood samples were collected for serum lipids and apolipoproteins measurements and DNA and RNA extraction. ABCB1 (C3435T and G2677T/A) and ABCC1 (G2012T) gene polymorphisms were identified by polymerase chain reaction-restriction (PCR)-RFLP and mRNA expression was measured in peripheral blood mononuclear cells by singleplex real-time PCR. ABCB1 polymorphisms were associated with risk for coronary artery disease (CAD) (p < 0.05). After atorvastatin treatment, both ABCB1 and ABCC1 genes showed 50% reduction of the mRNA expression (p < 0.05). Reduction of ABCB1 expression was associated with ABCB1 G2677T/A polymorphism (p = 0.039). Basal ABCB1 mRNA in the lower quartile (<0.024) was associated with lower reduction rate of serum low-density lipoprotein (LDL) cholesterol (33.4 +/- 12.4%) and apolipoprotein B (apoB) (17.0 +/- 31.3%) when compared with the higher quartile (>0.085: LDL-c = 40.3 +/- 14.3%; apoB = 32.5 +/- 10.7%; p < 0.05). ABCB1 substrates or inhibitors did not affect the baseline expression, while ABCB1 inhibitors reversed the effects of atorvastatin on both ABCB1 and ABCC1 transporters. In conclusion, ABCB1 and ABCC1 mRNA levels in PBMC are modulated by atorvastatin and ABCB1 G2677T/A polymorphism. and ABCB1 baseline expression is related to differences in serum LDL cholesterol and apoB in response to atorvastatin. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Ethylene signal transduction initiates with ethylene binding at receptor proteins and terminates in a transcription cascade involving the EIN3/EIL transcription factors. Here, we have isolated four cDNAs homologs of the Arabidopsis EIN3/EIN3-like gene, MA-EILs (Musa acuminata ethylene insensitive 3-like) from banana fruit. Sequence comparison with other banana EIL gene already registered in the database led us to conclude that, at this day, at least five different genes namely MA-EIL1, MA-EIL2/AB266318, MA-EIL3/AB266319, MA-EIL4/AB266320 and AB266321 exist in banana. Phylogenetic analyses included all banana EIL genes within a same cluster consisting of rice OsEILs, a monocotyledonous plant as banana. However, MA-EIL1, MA-EIL2/AB266318, MA-EIL4/AB266320 and AB266321 on one side, and MA-EIL3/AB266319 on the other side, belong to two distant subclusters. MA-EIL mRNAs were detected in all examined banana tissues but at lower level in peel than in pulp. According to tissues, MA-EIL genes were differentially regulated by ripening and ethylene in mature green fruit and wounding in old and young leaves. MA-EIL2/AB266318 was the unique ripening- and ethylene-induced gene; MA-EIL1, MA-EIL4/Ab266320 and AB266321 genes were downregulated, while MA-EIL3/AB266319 presented an unusual pattern of expression. Interestingly, a marked change was observed mainly in MA-EIL1 and MA-EIL3/Ab266319 mRNA accumulation concomitantly with changes in ethylene responsiveness of fruit. Upon wounding, the main effect was observed in MA-EIL4/AB266320 and AB266321 mRNA levels, which presented a markedly increase in both young and old leaves, respectively. Data presented in this study suggest the importance of a transcriptionally step control in the regulation of EIL genes during banana fruit ripening.
Resumo:
We previously demonstrated that conidia from Aspergillus fumigatus incubated with menadione and paraquat increases activity and expression of cyanide-insensitive alternative oxidase (AOX). Here, we employed the RNA silencing technique in A. fumigatus using the vector pALB1/aoxAf in order to down-regulate the aox gene. Positive transformants for aox gene silencing of A. fumigatus were more susceptible both to an imposed in vitro oxidative stress condition and to macrophages killing, suggesting that AOX is required for the A. fumigatus pathogenicity, mainly for the survival of the fungus conidia during host infection and resistance to reactive oxygen species generated by macrophages.
Resumo:
Snake venom lectins have been studied in regard to their chemical structure and biological functions. However, little is known about lectins isolated from Bothrops atrox snake venom. We report here the isolation and partial functional and biochemical characterization of an acidic glycan-binding protein called galatrox from this venom. This lectin was purified by affinity chromatography using a lactosyl-sepharose column, and its homogeneity and molecular mass were evaluated by high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The purified galatrox was homogeneous and characterized as an acidic protein (pI 5.2) with a monomeric and dimeric molecular mass of 16.2 and 32.5 kDa, respectively. Alignment of N-terminal and internal amino acid sequences of galatrox indicated that this protein exhibits high homology to other C-type snake venom lectins. Galatrox showed optimal hemagglutinating activity at a concentration of 100 mu g/ml and this effect was drastically inhibited by lactose, ethylenediaminetetraacetic acid, and heating, which confirmed galatrox`s lectin activity. While galatrox failed to induce the same level of paw edema or mast cell degranulation as B. atrox crude venom, galatrox did alter cellular viability, which suggested that galatrox might contribute to venom toxicity by directly inducing cell death.
Resumo:
Paracoccidioides brasiliensis infectious process relies on the initial expression of virulence faactors that are assumed to be controlled by molecular mechanisms through which the conidia and/or mycelial fragments convert to yeast cells. In order to analyze the profile of the thermally-induced dimorphic gene expression, 48 h C-L transition cultures which had been incubated at 36 degrees C were studied. By this time approximately 50% of the conidial population had already reverted to yeast form cells. At this transition time, an EST-Orestes library was constructed and characterized. As a result, 79 sequences were obtained, of which 39 (49.4%) had not been described previously in other libraries of this fungus and which could represent novel exclusive C-Y transition genes. Two of these sequences are, among others, cholestanol delta-isomerase, and electron transfer flavoprotein-ubiquinoneoxidoreductase (ETF-QO). The other 40 (50.6%) sequences were shared with Mycelia (M), Yeast (Y) or Mycelia to yest transition (M-Y) libraries. An important component of this group of sequences is a putative response regulator receiver SKN7, a protein of high importance in stress adaptation and a regulator of virulence in some bacteria and fungi. This is the first report identifying genes expressed during the C-Y transition process, the initial step required to understand the natural history of P brasiliensis conidia induced infection.
Resumo:
The miniexon gene has a central role in the processing of polycistronic pre-mRNA of kinetoplastids. It is added to the 5` extremity of each mRNA, supplying the 5`-capped structure to the molecule. Previous studies in Leishmania (Leishmania) major showed that the overexpression of the miniexon array attenuates the Virulence of the parasite in in vivo assays. The results presented here extend those findings to Vionnia subgenus. Leishmania (Vionnia) braziliensis was transfected with a cosmid harboring a tandem array of one hundred miniexon gene copies and then characterized by Northern blot analysis. The overexpression of the exogenous gene was confirmed and its effect on the virulence of L (V.) braziliensis was investigated in hamsters. In BALB/c mice we could not detect parasites during the course of 15 weeks of infection. In addition, hamsters infected with transfectants overexpressing the miniexon gene exhibited only a minor footpad swelling of late onset and failed to develop progressive lesion, these attenuated parasites could be recovered from the inoculation site 1 year after infection. The persistence of parasites in the host indicates that a stable line overexpressing the miniexon may be tested as live vaccine against leishmaniasis. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We show indirect evidences for the possible involvement of NIT-2-like binding motifs in transcription modulation of the PbGP43 gene, which codes for an important antigen from the human fungal pathogen Paracoccidioides brasiliensis. This investigation was motivated by the finding of 23 NIT2-like sites within the proximal -2047 nucleotides of the PbGP43 5` intergenic region from the Pb339 isolate. They compose four clusters, two of them identical. We found four NIT2-containing probes that were positive in electrophoretic mobility shift assays and further analyzed them. PbGP43 could be modulated by nitrogen primary sources in Pb339, Pb3 and Pb18 isolates, as observed by reverse transcription (RT) real time-PCR. Gene reporter assays conducted in Aspergillus nidulans suggested that the minimal fragment responsible for nitrogen modulation lies within -480 bp of the PbGP43 gene. This is the first report on PbGP43 transcription modulation in response to nitrogen primary sources, which might help understand its regulation during infection. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Methionine is a component of one-carbon metabolism and a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation. When methionine intake is high, an increase of S-adenosylmethionine (SAM) is expected. DNA methyltransferases convert SAM to S-adenosylhomocysteine (SAH). A high intracellular SAH concentration could inhibit the activity of DNA methyltransferases. Therefore, high methionine ingestion could induce DNA damage and change the methylation pattern of tumor suppressor genes. This study investigated the genotoxicity of a methionine-supplemented diet. It also investigated the diet`s effects on glutathione levels, SAM and SAH concentrations and the gene methylation pattern of p53. Wistar rats received either a methionine-supplemented diet (2% methionine) or a control diet (0.3% methionine) for six weeks. The methionine-supplemented diet was neither genotoxic nor antigenotoxic to kidney cells, as assessed by the comet assay. However, the methionine-supplemented diet restored the renal glutathione depletion induced by doxorubicin. This fact may be explained by the transsulfuration pathway, which converts methionine to glutathione in the kidney. Methionine supplementation increased the renal concentration of SAH without changing the SAM/SAH ratio. This unchanged profile was also observed for DNA methylation at the promoter region of the p53 gene. Further studies are necessary to elucidate this diet`s effects on genomic stability and DNA methylation. (C) 2011 Elsevier ay. All rights reserved.
Resumo:
We report the comparative proteomic and antivenomic characterization of the venoms of subspecies cascavella and collilineatus of the Brazilian tropical rattlesnake Crotalus durissus. The venom proteomes of C. d. collilineatus and C. d. cascavella comprise proteins in the range of 4-115 kDa belonging to 9 and 8 toxin families, respectively. Collilineatus and cascavella venoms contain 20-25 main toxins belonging to the following protein families: disintegrin, PLA(2), serine proteinase, cysteine-rich secretory protein (CRISP), vascular endothelial growth factor-like (VEGF), L-amino acid oxidase, C-type lectin-like, and snake venom metalloproteinase (SVMP). As judged by reverse-phase HPLC and mass spectrometry, cascavella and collilineatus share about 90% of their venom proteome. However, the relative occurrence of the toxin families departs among the two C. durissus subspecies venoms. The most notable difference is the presence of the myotoxin crotamine in some C. d. collilineatus specimens (averaging 20.8% of the total proteins of pooled venom), which is absent in the venom of C. d. cascavella. On the other hand, the neurotoxic PLA2 crotoxin represents the most abundant protein in both C. durissus venoms, comprising 67.4% of the toxin proteome in C. d. collilineatus and 72.5% in C. d. cascavella. Myotoxic PLA(2)s are also present in the two venoms albeit in different relative concentrations (18.1% in C. d. cascavella vs. 4.6% in C. d. collilineatus). The venom composition accounts for the clinical manifestations caused by C. durissus envenomations: systemic neurotoxicity and myalgic symptoms and coagulation disturbances, frequently accompanied by myoglobinuria and acute renal failure. The overall compositions of C. d. subspecies cascavella and collilineatus venoms closely resemble that of C. d. terrificus, supporting the view that these taxa can be considered geographical variations of the same species. Pooled venom from adult C.d. cascavella and neonate C.d. terrificus lack crotamine, whereas this skeletal muscle cell membrane depolarizing inducing myotoxin accounts for similar to 20% of the total toxins of venom pooled from C.d. collilineatus and C.d. terrificus from Southern Brazil. The possible relevance of the observed venom variability among the tropical rattlesnake subspecies was assessed by antivenomics using anti-crotalic antivenoms produced at Instituto Butantan and Instituto Vital Brazil. The results revealed that both antivenoms exhibit impaired immunoreactivity towards crotamine and display restricted (similar to 60%) recognition of PLA(2) molecules (crotoxin and D49-myotoxins) from C. d. cascavella and C. d. terrificus venoms. This poor reactivity of the antivenoms may be due to a combination of factors: on the one hand, an inappropriate choice of the mixture of venoms for immunization and, on the other hand, the documented low immunogenicity of PLA(2) molecules. C. durissus causes most of the lethal snakebite accidents in Brazil. The implication of the geographic variation of venom composition for the treatment of bites by different C. durissus subspecies populations is discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The dimorphic fungus Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis, the most frequent systemic mycosis in Latin America. Our group has been working with paracoccin, a P. brasiliensis lectin with MM 70 kDa. which is purified by affinity, with immobilized N-acetylglucosamine (GlcNAc). Paracoccin has been described to play a role in fungal adhesion to extracellular matrix components and to induce high and persistent levels or TNF alpha. and nitric oxide production by macrophages. In the cell wall, paracoccin colocalizes with the beta-1,4-homopolymer of GlcNAc into the budding sites of the P. brasiliensis yeast cell. In this paper we present a protocol for the chitin-affinity purification or paracoccin. This procedure provided higher yields than those achieved by means of the technique based oil the affinity of this lectin with GlcNAc and had an impact on downstream assays. SDS-PAGE and Western blot analysis revealed similarities between the N-acetylglucosamine- and chitin-bound fractions, confirmed by MALDI-TOF-MS of trypsinic peptides. Western blot of two-dimensional gel electrophoresis of the yeast extract showed a major spot with M(r) 70000 and pl approximately 5.63. Moreover, an N-acetyl-beta-D-glucosaminidase activity was reported for paracoccin, thereby providing new insights into the mechanisms that lead to cell wall remodelling and opening new perspectives for its structural characterization. Copyright (C) 2009 John Wiley & Sons. Ltd.