95 resultados para PL-AOV-Graph
Resumo:
The brain is a complex system that, in the normal condition, has emergent properties like those associated with activity-dependent plasticity in learning and memory, and in pathological situations, manifests abnormal long-term phenomena like the epilepsies. Data from our laboratory and from the literature were classified qualitatively as sources of complexity and emergent properties from behavior to electrophysiological, cellular, molecular, and computational levels. We used such models as brainstem-dependent acute audiogenic seizures and forebrain-dependent kindled audiogenic seizures. Additionally we used chemical OF electrical experimental models of temporal lobe epilepsy that induce status epilepticus with behavioral, anatomical, and molecular sequelae such as spontaneous recurrent seizures and long-term plastic changes. Current Computational neuroscience tools will help the interpretation. storage, and sharing of the exponential growth of information derived from those studies. These strategies are considered solutions to deal with the complexity of brain pathologies such as the epilepsies. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Bioelectrical impedance vector analysis (BIVA) is a new method that is used for the routine monitoring of the variation in body fluids and nutritional status with assumptions regarding body composition values. The aim of the present study was to determine bivariate tolerance intervals of the whole-body impedance vector and to describe phase angle (PA) values for healthy term newborns aged 7-28 d. This descriptive cross-sectional study was conducted on healthy term neonates born at a low-risk public maternity. General and anthropometric neonatal data and bioelectrical impedance data (800 mu A-50 kHz) were obtained. Bivariate vector analysis was conducted with the resistance-reactance (RXc) graph method. The BIVA software was used to construct the graphs. The study was conducted on 109 neonates (52.3% females) who were born at term, adequate for gestational age, exclusively breast-fed and aged 13 (SD 3.6) d. We constructed one standard, reference, RXc-score graph and RXc-tolerance ellipses (50, 75 and 95 %) that can be used with any analyser. Mean PA was 3.14 (SD 0.43)degrees (3.12 (SD 0.39)degrees for males and 3.17 (SD 0.48)degrees for females). Considering the overlapping of ellipses of males and females with the general distribution, a graph for newborns aged 7-28 d with the same reference tolerance ellipse was defined for boys and girls. The results differ from those reported in the literature probably, in part, due to the ethnic differences in body composition. BIVA and PA permit an assessment without the need to know body weight and the prediction error of conventional impedance formulas.
Resumo:
It was hypothesized the lower fertility of repeat-breeder (RB) Holstein cows is associated with oocyte quality and this negative effect is enhanced during summer heat stress (HS). During the summer and the winter, heifers (H; n = 36 and 34, respectively), peak-lactation (PL; n = 37 and 32, respectively), and RB (n = 36 and 31, respectively) Holstein cows were subjected to ovum retrieval to assess oocyte recovery, in vitro embryonic developmental rates, and blastocyst quality [terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and total cell number]. The environmental temperature and humidity, respiration rate, and cutaneous and rectal temperatures were recorded in both seasons. The summer HS increased the respiration rate and the rectal temperature of PL and RB cows, and increased the cutaneous temperature and lowered the in vitro embryo production of Holstein cows and heifers. Although cleavage rate was similar among groups [H = 51.7% +/- 4.5 (n = 375), PL = 37.9% +/- 5.1 (n = 390), RB = 41.9% +/- 4.5 (n = 666)], blastocyst rate was compromised by HS, especially in RB cows [H = 30.3% +/- 4.8 (n = 244) vs. 23.3% +/- 6.4 (n = 150), PL = 22.0% +/- 4.7 (n = 191) vs. 14.6% +/- 7.6 (n = 103), RB = 22.5% +/- 5.4 (n = 413) vs. 7.9% +/- 4.3 (n = 177)]. Moreover, the fragmentation rate of RB blastocysts was enhanced during the summer, compared with winter [4.9% +/- 0.7 (n = 14) vs. 2.2% +/- 0.2 (n = 78)] and other groups [H = 2.5% +/- 0.7 (n = 13), and PL = 2.7% +/- 0.6 (n = 14)] suggesting that the association of RB fertility problems and summer HS may potentially impair oocyte quality. Our findings provide evidence of a greater sensitivity of RB oocytes to summer HS.
Resumo:
Purpose The aim of this study was to evaluate the ability of bond strength tests to accurately measure the bond strength of fiber posts luted into root canals Materials and Methods The test methods studied were hourglass microtensile (HM), push-out (PS), modified push out (MP) and pull out (PL) The evaluated parameters were bond strength values, reliability (using Weibull analysis), failure mode (using confocal microscopy), and stress distribution (using finite element analysis) Forty human intact single rooted and endodontically treated teeth were divided into four groups Each group was assigned one of the test methods The samples in the HM and PS groups were 1 0 +/- 0 1 mm thick, the HM samples were hourglass shaped and the PS samples were disk shaped For the PL and MP groups, each 1 mm dentin slice was luted with a fiber post piece Three dimensional models of each group were made and stress was analyzed based on Von Mises criteria Results PL provided the highest values of bond strength followed by MP both of which also had greater amounts of adhesive failures PS showed the highest frequency of cohesive failures MP showed a more homogeneous stress distribution and a higher Weibull modulus Conclusion The specimen design directly influences the biomechanical behavior of bond strength tests
Resumo:
Provision of an inert gas atmosphere with high-purity argon gas is recommended for preventing titanium castings from contamination although the effects of the level of argon purity on the mechanical properties and the clinical performance of Ti castings have not yet been investigated. The purpose of this study was to evaluate the effect of argon purity on the mechanical properties and microstructure of commercially pure (cp) Ti and Ti-6Al-4V alloys. The castings were made using either high-purity and/or industrial argon gas. The ultimate tensile strength (UTS), proportional limit (PL), elongation (EL) and microhardness (VHN) at different depths were evaluated. The microstructure of the alloys was also revealed and the fracture mode was analyzed by scanning electron microscopy. The data from the mechanical tests and hardness were subjected to a two-and three-way ANOVA and Tukey`s test (alpha = 0.05). The mean values of mechanical properties were not affected by the argon gas purity. Higher UTS, PL and VHN, and lower EL were observed for Ti-6Al-4V. The microhardness was not influenced by the argon gas purity. The industrial argon gas can be used to cast cp Ti and Ti-6Al-4V.