257 resultados para PHYSICS, NUCLEAR
Resumo:
Strangelets (hypothetical stable lumps of strange quarkmatter) of astrophysical origin may be ultimately detected in specific cosmic ray experiments. The initial mass distribution resulting from the possible astrophysical production sites would be subject to reprocessing in the interstellar medium and in the earth`s atmosphere. In order to get a better understanding of the claims for the detection of this still hypothetic state of hadronic matter, we present a study of strangelet-nucleus interactions including several physical processes of interest (abrasion, fusion, fission, excitation and de-excitation of the strangelets), to address the fate of the baryon number along the strangelet path. It is shown that, although fusion may be important for low-energy strangelets in the interstellar medium (thus increasing the initial baryon number A), in the earth`s atmosphere the loss of the baryon number should be the dominant process. The consequences of these findings are briefly addressed.
Resumo:
We calculate the spectra of produced thermal photons in Au + Au collisions taking into account the nonequilibrium contribution to photon production due to finite shear viscosity. The evolution of the fireball is modeled by second-order as well as by divergence-type 2 + 1 dissipative hydrodynamics, both with an ideal equation of state and with one based on Lattice QCD that includes an analytical crossover. The spectrum calculated in the divergence-type theory is considerably enhanced with respect to the one calculated in the second-order theory, the difference being entirely due to differences in the viscous corrections to photon production. Our results show that the differences in hydrodynamic formalisms are an important source of uncertainty in the extraction of the value of eta/s from measured photon spectra. The uncertainty in the value of eta/s associated with different hydrodynamic models used to compute thermal photon spectra is larger than the one occurring in matching hadron elliptic flow to RHIC data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Alfven eigenmodes (AE) driven by ion cyclotron resonance heating are usually registered by different diagnostic channels in the hot core plasmas of large tokamaks like JET and ASDEX Upgrade. These AE appear very near to the extremum points of Alfven wave continuum, which is modified by the geodesic effect due to poloidal mode coupling. It is shown that the AE spectrum may be explored as the magnetic spectroscopy (like Alfven cascades by Sharapov et al 2001 Phys. Lett. A 289 127) to determine the q-factor minimum and geodesic frequency at the magnetic axis in standard sawtoothed discharges without reversed shear.
Resumo:
The electrostatic geodesic mode oscillations are investigated in rotating large aspect ratio tokamak plasmas with circular isothermal magnetic surfaces. The analysis is carried out within the magnetohydrodynamic model including heat flux to compensate for the non-adiabatic pressure distribution along the magnetic surfaces in plasmas with poloidal rotation. Instead of two standard geodesic modes, three geodesic continua are found. The two higher branches of the geodesic modes have a small frequency up-shift from ordinary geodesic acoustic and sonic modes due to rotation. The lower geodesic continuum is a newzonal flowmode (geodesic Doppler mode) in plasmas with mainly poloidal rotation. Limits to standard geodesic modes are found. Bifurcation of Alfven continuum by geodesic modes at the rational surfaces is also discussed. Due to that, the frequency of combined geodesic continuum extends from the poloidal rotation frequency to the ion-sound band that can have an important role in suppressing plasma turbulence.
Resumo:
We explore a method for constructing two-dimensional area-preserving, integrable maps associated with Hamiltonian systems, with a given set of fixed points and given invariant curves. The method is used to find an integrable Poincare map for the field lines in a large aspect ratio tokamak with a poloidal single-null divertor. The divertor field is a superposition of a magnetohydrodynamic equilibrium with an arbitrarily chosen safety factor profile, with a wire carrying an electric current to create an X-point. This integrable map is perturbed by an impulsive perturbation that describes non-axisymmetric magnetic resonances at the plasma edge. The non-integrable perturbed map is applied to study the structure of the open field lines in the scrape-off layer, reproducing the main transport features obtained by integrating numerically the magnetic field line equations, such as the connection lengths and magnetic footprints on the divertor plate.
Resumo:
A new method for determining the temporal evolution of plasma rotation is reported in this work. The method is based upon the detection of two different portions of the spectral profile of a plasma impurity line, using a monochromator with two photomultipliers installed at the exit slits. The plasma rotation velocity is determined by the ratio of the two detected signals. The measured toroidal rotation velocities of C III (4647.4 angstrom) and C VI (5290.6 angstrom), at different radial positions in TCABR discharges, show good agreement, within experimental uncertainty, with previous results (Severo et al 2003 Nucl. Fusion 43 1047). In particular, they confirm that the plasma core rotates in the direction opposite to the plasma current, while near the plasma edge (r/a > 0.9) the rotation is in the same direction. This technique was also used to investigate the dependence of toroidal rotation on the poloidal position of gas puffing. The results show that there is no dependence for the plasma core, while for plasma edge (r/a > 0.9) some dependence is observed.
Resumo:
This paper presents an overview of the results obtained during the Joint Experiments organized in the framework of the IAEA Coordinated Research Project on `Joint Research Using Small Tokamaks` that have been carried out on the tokamaks CASTOR at IPP Prague, Czech Republic (2005), T-10 at RRC `Kurchatov Institute`, Moscow, Russia (2006), and the most recent one at ISTTOK at IST, Lisbon, Portugal, in 2007. Experimental programmes were aimed at diagnosing and characterizing the core and the edge plasma turbulence in a tokamak in order to investigate correlations between the occurrence of transport barriers, improved confinement, electric fields and electrostatic turbulence using advanced diagnostics with high spatial and temporal resolution. On CASTOR and ISTTOK, electric fields were generated by biasing an electrode inserted into the edge plasma and an improvement of the global particle confinement induced by the electrode positive biasing has been observed. Geodesic acoustic modes were studied using heavy ion beam diagnostics on T-10 and ISTTOK and correlation reflectometry on T-10. ISTTOK is equipped with a gallium jet injector and the technical feasibility of gallium jets interacting with plasmas has been investigated in pulsed and ac operation. The first Joint Experiments have clearly demonstrated that small tokamaks are suitable for broad international cooperation to conduct dedicated joint research programmes. Other activities within the IAEA Coordinated Research Project on Joint Research Using Small Tokamaks are also overviewed.
Resumo:
For tokamak models using simplified geometries and reversed shear plasma profiles, we have numerically investigated how the onset of Lagrangian chaos at the plasma edge may affect the plasma confinement in two distinct but closely related problems. Firstly, we have considered the motion of particles in drift waves in the presence of an equilibrium radial electric field with shear. We have shown that the radial particle transport caused by this motion is selective in phase space, being determined by the resonant drift waves and depending on the parameters of both the resonant waves and the electric field profile. Moreover, we have shown that an additional transport barrier may be created at the plasma edge by increasing the electric field. In the second place, we have studied escape patterns and magnetic footprints of chaotic magnetic field lines in the region near a tokamak wall, when there are resonant modes due to the action of an ergodic magnetic limiter. A non-monotonic safety factor profile has been used in the analysis of field line topology in a region of negative magnetic shear. We have observed that, if internal modes are perturbed, the distributions of field line connection lengths and magnetic footprints exhibit spatially localized escape channels. For typical physical parameters of a fusion plasma, the two Lagrangian chaotic processes considered in this work can be effective in usual conditions so as to influence plasma confinement. The reversed shear effects discussed in this work may also contribute to evaluate the transport barrier relevance in advanced confinement scenarios in future tokamak experiments.
Resumo:
We calculate the form factors and the coupling constant in the D*D rho vertex in the framework of QCD sum rules. We evaluate the three-point correlation functions of the vertex considering D, rho and D* mesons off-shell. The form factors obtained are very different but give the same coupling constant: g(D*D rho) = 4.3 +/- 0.9 GeV(-1). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The complete understanding of the basic constituents of hadrons and the hadronic dynamics at high energies are two of the main challenges for the theory of strong interactions. In particular, the existence of intrinsic heavy quark components in the hadron wave function must be confirmed (or disproved). In this paper we propose a new mechanism for the production of D-mesons at forward rapidities based on the Color Glass Condensate (CGC) formalism and demonstrate that the resulting transverse momentum spectra are strongly dependent on the behavior of the charm distribution at large Bjorken x. Our results show clearly that the hypothesis of intrinsic charm can be tested in pp and p(d)A collisions at RHIC and LHC. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the last years many states in the charmonium mass region were discovery by BABAR, Belle and CDF collaborations I discuss some of these discoveries, and how the QCD Sum Rule approach can be used to understand the structure of these states
Resumo:
Recent experiments have shown that the multimode approach for describing the fission process is compatible with the observed results. Asystematic analysis of the parameters obtained by fitting the fission-fragment mass distribution to the spontaneous and low-energy data has shown that the values for those parameters present a smooth dependence upon the nuclear mass number. In this work, a new methodology is introduced for studying fragment mass distributions through the multimode approach. It is shown that for fission induced by energetic probes (E > 30 MeV) the mass distribution of the fissioning nuclei produced during the intranuclear cascade and evaporation processes must be considered in order to have a realistic description of the fission process. The method is applied to study (208)Pb, (238)U, (239)Np and (241)Am fission induced by protons or photons.
Resumo:
We use QCD sum rules to study the recently observed resonance-like structures in the pi(+)chi(c1) mass distribution, Z(1)(+) (4050) and Z(2)(+) (4250), considered as D*(+) (D) over bar*(0) and D(1)(+) (D) over bar (0) + D(+) (D) over bar (0)(1) molecules with the quantum number J(P) = 0(+) and J(P) = 1-, respectively. We consider the contributions of condensates up to dimension eight and work at leading order in alpha(s). We obtain m(D*D*) = (4.15 +/- 0.12) GeV, around 100 MeV above the D*D* threshold, and m(D1D) = (4.19 +/- 0.22) GeV, around 100 MeV below the D(1)D threshold. We conclude that the D*(+)(D) over bar*(0) state is probably a virtual state that is not related with the Z(1)(+) (4050) resonance-like structure. In the case of the D(1)D molecular state, considering the errors, its mass is consistent with both Z(1)(+)(4050) and Z(2)(+)(4250) resonance-like structures. Therefore, we conclude that no definite conclusion can be drawn for this state from the present analysis. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
We use QCD sum rules to test the nature of the recently observed mesons Y(4260), Y(4350) and Y(4660), assumed to be exotic four-quark (c (c) over barq (q) over bar) or (c (c) over bars (s) over bar) states with J(PC)= 1(--). We work at leading order in alpha(s), consider the contributions of higher dimension condensates and keep terms which are linear in the strange quark mass m(s). We find for the (c (c) over bars (s) over bar) state a mass in m(Y) = (4.65 +/- 0.10) GeV which is compatible with the experimental candidate Y (4660), while for the (c (c) over barq (q) over bar) state we find a mass in m(Y) = (4.49 +/- 0.11) GeV, which is still consistent with the mass of the experimental candidate Y(4350). With the tetraquark structure we are working we cannot explain the Y(4260) as a tetraquark state. We also consider molecular D(s0)(D) over bar (s)* and D(0)(D) over bar* states. For the D(s0)(D) over bar (s)* molecular state we get m(Ds0 (D) over bars*) = (4.42 +/- 0.10) GeV which is consistent, considering the errors, with the mass of the meson Y(4350) and for the D(0)(D) over bar* molecular state we get m(D0 (D) over bar*) = (4.27 +/- 0.10) GeV in excellent agreement with the mass of the meson Y(4260). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
At very high energies we expect that the hadronic cross sections satisfy the Froissart bound, which is a well-established property of the strong interactions. In this energy regime we also expect the formation of the Color Glass Condensate, characterized by gluon saturation and a typical momentum scale: the saturation scale Q(s). In this paper we show that if a saturation window exists between the nonperturbative and perturbative regimes of Quantum Chromodynamics (QCD), the total cross sections satisfy the Froissart bound. Furthermore, we show that our approach allows us to described the high energy experimental data on pp/p (p) over bar total cross sections.