115 resultados para Oscillatory Marangoni-Convection
Resumo:
We present five profiles from electrical resistivity tomography (ERT), with surface constraints and gravity data, in the central uplift of the Araguainha impact structure in central Brazil. The central uplift, the overlying polymict breccias, and decameter-scale impact melt rocks are characterized by contrasting ranges of electrical resistivity. Our resistivity model provides empirical evidence that supports the existing model in which impact melt and breccias resurged toward the crater center in the final stages of the cratering process. On the basis of our results from the first use of ERT in impact cratering studies, we conclude that the deposition and flow of impact melt and breccias over the central uplift were influenced by the geometry of the lithologic boundaries in the central uplift.
Resumo:
The South American (SA) rainy season is studied in this paper through the application of a multivariate Empirical Orthogonal Function (EOF) analysis to a SA gridded precipitation analysis and to the components of Lorenz Energy Cycle (LEC) derived from the National Centers for Environmental Prediction (NCEP) reanalysis. The EOF analysis leads to the identification of patterns of the rainy season and the associated mechanisms in terms of their energetics. The first combined EOF represents the northwest-southeast dipole of the precipitation between South and Central America, the South American Monsoon System (SAMS). The second combined EOF represents a synoptic pattern associated with the SACZ (South Atlantic convergence zone) and the third EOF is in spatial quadrature to the second EOF. The phase relationship of the EOFs, as computed from the principal components (PCs), suggests a nonlinear transition from the SACZ to the fully developed SAMS mode by November and between both components describing the SACZ by September-October (the rainy season onset). According to the LEC, the first mode is dominated by the eddy generation term at its maximum, the second by both baroclinic and eddy generation terms and the third by barotropic instability previous to the connection to the second mode by September-October. The predominance of the different LEC components at each phase of the SAMS can be used as an indicator of the onset of the rainy season in terms of physical processes, while the existence of the outstanding spectral peaks in the time dependence of the EOFs at the intraseasonal time scale could be used for monitoring purposes. Copyright (C) 2009 Royal Meteorological Society
Resumo:
This work analyzes high-resolution precipitation data from satellite-derived rainfall estimates over South America, especially over the Amazon Basin. The goal is to examine whether satellite-derived precipitation estimates can be used in hydrology and in the management of larger watersheds of South America. High spatial-temporal resolution precipitation estimates obtained with the CMORPH method serve this purpose while providing an additional hydrometeorological perspective on the convective regime over South America and its predictability. CMORPH rainfall estimates at 8-km spatial resolution for 2003 and 2004 were compared with available rain gauge measurements at daily, monthly, and yearly accumulation time scales. The results show the correlation between satellite-derived and gauge-measured precipitation increases with accumulation period from daily to monthly, especially during the rainy season. Time-longitude diagrams of CMORPH hourly rainfall show the genesis, strength, longevity, and phase speed of convective systems. Hourly rainfall analyses indicate that convection over the Amazon region is often more organized than previously thought, thus inferring that basin scale predictions of rainfall for hydrological and water management purposes have the potential to become more skillful. Flow estimates based on CMORPH and the rain gauge network are compared to long-term observed average flow. The results suggest this satellite-based rainfall estimation technique has considerable utility. Other statistics for monthly accumulations also suggest CMORPH can be an important source of rainfall information at smaller spatial scales where in situ observations are lacking.
Resumo:
It is well known that clocks are present in brain regions other than the suprachiasmatic nucleus and in many peripheral tissues. In the teleost, Danio rerio, peripheral oscillators can be directly synchronized by light. Danio rerio ZEM-2S embryonic cells respond to light with differential growth: cells kept in constant light exhibited a strong inhibition of proliferation, whereas in cells kept in light:dark (LD) cycles (14L:10D and 10L:14D) or in constant darkness (DD), the doubling times were not statistically different. We demonstrated by RT-PCR followed by PCR that ZEM-2S cells express two melanopsins, Opn4x and Opn4m, and the six Cry genes. The presence of the protein OPN4x was demonstrated by immunocytochemistry. The pattern of temporal expression of the genes Opn4x, Per1, Cry1b, and Clock was studied in ZEM-2S cells kept for five days in 12L:12D or DD. In 12L:12D, the clock genes Per 1 and Cry1b exhibited robust circadian expression, while Opn4x and Clock expression seemed to vary in an ultradian pattern. Both Per1 and Cry1b genes had higher expression during the L phase; Clock gene had an increase in expression coincident with the D phase, and during the subjective night. In DD, the temporal variation of Per1 and Cry1b genes was greatly attenuated but not extinguished, and the higher expressions were shifted to the transition times between subjective day and night, demonstrating that Per and Cry1b were synchronized by the LD cycle. Clock and Opn4x kept the ultradian oscillation, but the rhythm was not statistically significant. As endothelins (ET) have been reported to be a potent stimulator of Per genes in rodents, we investigated the effect of endothelin on ZEM-2S cells, which express ETA receptors. Cells were kept in 12D:12L for five days, and then treated with 10-11 to 10-8M ET-1 for 24h. ET-1 exhibited a biphasic effect on Opn4x expression. At 10-11M, the hormone exerted a highly significant stimulation of Opn4x expression during the L phase and introduced a circadian oscillatory pattern. At 10-10M, a significant increase was seen at ZT21 and ZT0 (i.e., at the end of the D phase and beginning of the L phase), whereas 10-9 and 10-8M ET-1 inhibited the expression of Opn4x at most ZTs. Clock expression was unaffected by 10-8M ET-1; however, in the presence of lower concentrations, the expression was enhanced at some ZTs, strengthening the ultradian oscillation. ET-1 at 10-11 and 10-10M had no effect on Per1 circadian expression; however, 10-9 and 10-8M ET-1 reduced the amplitude of Per1 expression in the beginning of the L phase. ET-1 effects were less evident on Cry 1b. For both genes, the reduction in expression was not sufficient to abolish the circadian oscillatory pattern. Based on these results and data in the literature, a link between ET-1 stimulation of ETA receptors may be established by E4BP4 binding to the promoters and consequent inhibition of gene expression.
Resumo:
A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.
Resumo:
We consider a certain type of second-order neutral delay differential systems and we establish two results concerning the oscillation of solutions after the system undergoes controlled abrupt perturbations (called impulses). As a matter of fact, some particular non-impulsive cases of the system are oscillatory already. Thus, we are interested in finding adequate impulse controls under which our system remains oscillatory. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A numerical algorithm for fully dynamical lubrication problems based on the Elrod-Adams formulation of the Reynolds equation with mass-conserving boundary conditions is described. A simple but effective relaxation scheme is used to update the solution maintaining the complementarity conditions on the variables that represent the pressure and fluid fraction. The equations of motion are discretized in time using Newmark`s scheme, and the dynamical variables are updated within the same relaxation process just mentioned. The good behavior of the proposed algorithm is illustrated in two examples: an oscillatory squeeze flow (for which the exact solution is available) and a dynamically loaded journal bearing. This article is accompanied by the ready-to-compile source code with the implementation of the proposed algorithm. [DOI: 10.1115/1.3142903]
Resumo:
fit the context of normalized variable formulation (NVF) of Leonard and total variation diminishing (TVD) constraints of Harten. this paper presents an extension of it previous work by the authors for solving unsteady incompressible flow problems. The main contributions of the paper are threefold. First, it presents the results of the development and implementation of a bounded high order upwind adaptative QUICKEST scheme in the 3D robust code (Freeflow), for the numerical solution of the full incompressible Navier-Stokes equations. Second, it reports numerical simulation results for 1D hock tube problem, 2D impinging jet and 2D/3D broken clam flows. Furthermore, these results are compared with existing analytical and experimental data. And third, it presents the application of the numerical method for solving 3D free surface flow problems. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved,
Resumo:
Chaotic synchronization has been discovered to be an important property of neural activities, which in turn has encouraged many researchers to develop chaotic neural networks for scene and data analysis. In this paper, we study the synchronization role of coupled chaotic oscillators in networks of general topology. Specifically, a rigorous proof is presented to show that a large number of oscillators with arbitrary geometrical connections can be synchronized by providing a sufficiently strong coupling strength. Moreover, the results presented in this paper not only are valid to a wide class of chaotic oscillators, but also cover the parameter mismatch case. Finally, we show how the obtained result can be applied to construct an oscillatory network for scene segmentation.
Resumo:
Synchronization and chaos play important roles in neural activities and have been applied in oscillatory correlation modeling for scene and data analysis. Although it is an extensively studied topic, there are still few results regarding synchrony in locally coupled systems. In this paper we give a rigorous proof to show that large numbers of coupled chaotic oscillators with parameter mismatch in a 2D lattice can be synchronized by providing a sufficiently large coupling strength. We demonstrate how the obtained result can be applied to construct an oscillatory network for scene segmentation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We study by numerical simulations the time correlation function of a stochastic lattice model describing the dynamics of coexistence of two interacting biological species that present time cycles in the number of species individuals. Its asymptotic behavior is shown to decrease in time as a sinusoidal exponential function from which we extract the dominant eigenvalue of the evolution operator related to the stochastic dynamics showing that it is complex with the imaginary part being the frequency of the population cycles. The transition from the oscillatory to the nonoscillatory behavior occurs when the asymptotic behavior of the time correlation function becomes a pure exponential, that is, when the real part of the complex eigenvalue equals a real eigenvalue. We also show that the amplitude of the undamped oscillations increases with the square root of the area of the habitat as ordinary random fluctuations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report in detail oscillatory magnetoresistance in double quantum wells under microwave irradiation. The experimental investigation contains measurements of frequency, power and temperature dependence. In theory, the observed interference oscillations are explained in terms of the influence of subband coupling on the frequency-dependent photoinduced part of the electron distribution function. Thus, the magnetoresistance shows the interference of magneto-intersubband and conventional microwave induced resistance oscillations.
Resumo:
In this paper, we report the measurement of Rb(2) molecule formation rate constant due to a two body process in a magneto-optical trap as a function of the sample temperature. The ground state molecules are detected by two-photon ionization, through the intermediate a(3)Sigma(+)(u) -> 2(3)Pi(g) molecular band. Our results show that the Rb(2) molecules formed in the MOT could be due to a wave shape resonance, which enhances the molecule formation rate. This effect may be used to enhance the molecule production; and therefore it maybe important to future experiments involving production and trapping of cold ground state molecules.
Resumo:
We report on the experimental observation of vortex formation and production of tangled vortex distribution in an atomic BEC of (87)Rb atoms submitted to an external oscillatory perturbation. The oscillatory perturbations start by exciting quadrupolar and scissors modes of the condensate. Then regular vortices are observed finally evolving to a vortex tangle configuration. The vortex tangle is a signature of the presence of a turbulent regime in the cloud. We also show that this turbulent cloud has suppression of the aspect ratio inversion typically observed in quantum degenerate bosonic gases during free expansion.
Resumo:
In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boundary, under the only restriction of small velocities. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of a slow moving boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances. Since our results were obtained in the framework of the perturbation theory, they are restricted, under resonant conditions, to a short-time approximation. (C) 2009 Elsevier Inc. All rights reserved.