106 resultados para Machaonia brasiliensis
Resumo:
This in vivo study evaluated the osteogenic potential of two proteins, recombinant human bone morphogenetic protein-2 (rhBMP-2) and a protein extracted from natural latex (Hevea brasiliensis, P-1), and compared their effects on bone defects when combined with a carrier or a collagen gelatin. Eighty-four (84) Wistar rats were divided into two groups, with and without the use of collagen gelatin, and each of these were divided into six treatment groups of seven animals each. The treatment groups were: (1) 5 mu g of pure rhBMP-2; (2) 5 mu g of rhBMP-2/monoolein gel; (3) pure monoolein gel; (4) 5 mu g of pure P-1; (5) 5 mu g of P-1/monoolein gel; (6) critical bone defect control. The animals were anesthetized and a 6 mm diameter critical bone defect was made in the left posterior region of the parietal bone. Animals were submitted to intracardiac perfusion after 4 weeks and the calvaria tissue was removed for histomorphometric analysis. In this experimental study, it was concluded that rhBMP-2 allowed greater new bone formation than P-1 protein and this process was more effective when the bone defect was covered with collagen gelatin (P < 0.05). Anat Rec, 293:794-801, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
The conventional treatment for paracoccidioidomycosis, the most prevalent mycosis in Latin America, involves long periods of therapy resulting in sequels and high frequency of relapses. The search for new alternatives of treatment is necessary. Previously, we have demonstrated that the hsp65 gene from Mycobacterium leprae shows prophylactic effects against murine paracoccidioidomycosis. Here, we tested the DNAhsp65 immunotherapy in BALB/c mice infected with Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis. We observed an increase of Th1 cytokines accompanied by a reduction in fungal burden and pulmonary injury. These results provide new prospects for immunotherapy of paracoccidioidomycosis and other mycoses. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
P>Strongyloides stercoralis is an intestinal nematode capable of chronic, persistent infection and hyperinfection of the host; this can lead to dissemination, mainly in immunosuppressive states, in which the infection can become severe and result in the death of the host. In this study, we investigated the immune response against Strongyloides venezuelensis infection in major histocompatibility complex (MHC) class I or class II deficient mice. We found that MHC II(-/-) animals were more susceptible to S. venezuelensis infection as a result of the presence of an elevated number of eggs in the faeces and a delay in the elimination of adult worms compared with wild-type (WT) and MHC I(-/-) mice. Histopathological analysis revealed that MHC II(-/-) mice had a mild inflammatory infiltration in the small intestine with a reduction in tissue eosinophilia. These mice also presented a significantly lower frequency of eosinophils and mononuclear cells in the blood, together with reduced T helper type 2 (Th2) cytokines in small intestine homogenates and sera compared with WT and MHC I(-/-) animals. Additionally, levels of parasite-specific immunoglobulin M (IgM), IgA, IgE, total IgG and IgG1 were also significantly reduced in the sera of MHC II(-/-) infected mice, while a non-significant increase in the level of IgG2a was found in comparison to WT or MHC I(-/-) infected mice. Together, these data demonstrate that expression of MHC class II but not class I molecules is required to induce a predominantly Th2 response and to achieve efficient control of S. venezuelensis infection in mice.
Resumo:
Interleukin (IL)-18 has been regarded as a Th1 type cytokine involved in many fungal and parasitic infections. Since there have been no studies, as of yet, evaluating the role of this cytokine in paracoccidioidomycosis (PCM), we assessed the function of IL-18 by using an experimental PCM model. Our results showed that IL-18 knockout (IL-18-/-) BALB/c were more resistant to Paracoccidioides brasiliensis than their littermate controls (WT). In fact, mortality rate was higher in WT mice and in the first month of infection, the number of colony forming units of the etiologic agent recovered from the lungs was greater in WT mice. In histopathological analyses, well-formed granulomas were seen in both WT and IL-18-/- mice. However, substantial differences were observed at the second month of infection when epithelioid cells predominated in the lesions of IL-18-/- mice, which could infer that IL-18 postpones pulmonary healing. The levels of IL-10 were significantly higher in IL-18 sufficient mice at early stages of infection and therefore account for the delayed fungal clearance observed in WT mice. TNF- augmented later in the infection of WT mice, seemingly to compensate high levels of IL-10. Our results demonstrated that IL-18 has a critical role in protecting BALB/c mice against disseminated PCM.
Resumo:
Epidemiologic and clinical data for 53 patients with paracoccidioidomycosis and co-infected with human immunodeficiency virus (HIV) (cases) were compared with those for 106 patients with endemic paracoccidioidomycosis (controls). The prevalence of Paracoccidioides brasiliensis co-infection was estimated in 1.4% in cases of acquired immunodeficiency syndrome (AIDS). Patients co-infected with HIV were younger, less involved in agricultural occupations; 83.7% had CD4+ cell count < 200 cells/mu L. Paracoccidioidomycosis in co-infected patients usually showed a rapid progression, with more fever, frequent involvement of the lungs, and multiple extrapulmonary lesions. The response to antifungal therapy and deaths caused by paracoccidioidomycosis were similar in the two patient groups, but late relapses were more common in co-infected cases. Paracoccidioidomycosis in HIV-infected patients shows epidemiologic and clinical characteristics differing from those of the endemic disease and should be considered an AIDS-defining opportunistic infection in Latin America.
Resumo:
We earlier demonstrated that nitric oxide (NO) is a fungicidal molecule against Sporothrix schenckii in vitro. In the present study we used mice deficient in inducible nitric oxide synthase (iNOS(-/-)) and C57BL/6 wild-type (WT) mice treated with N omega-nitro-arginine (Nitro-Arg-treated mice), an NOS inhibitor, both defective in the production of reactive nitrogen intermediates, to investigate the role of endogenous NO during systemic sporotrichosis. When inoculated with yeast cells of S. schenckii, WT mice presented T-cell suppression and high tissue fungal dissemination, succumbing to infection. Furthermore, susceptibility of mice seems to be related to apoptosis and high interleukin-10 and tumour necrosis factor-alpha production by spleen cells. In addition, fungicidal activity and NO production by interferon-gamma (IFN-gamma) and lipopolysaccharide-activated macrophages from WT mice were abolished after fungal infection. Strikingly, iNOS(-/-) and Nitro-Arg-treated mice presented fungal resistance, controlling fungal load in tissues and restoring T-cell activity, as well as producing high amounts of IFN-gamma Interestingly, macrophages from these groups of mice presented fungicidal activity after in vitro stimulation with higher doses of IFN-gamma. Herein, these results suggest that although NO was an essential mediator to the in vitro killing of S. schenckii by macrophages, the activation of NO system in vivo contributes to the immunosuppression and cytokine balance during early phases of infection with S. schenckii.
Resumo:
Paracoccidioidomycosis (PCM) is a granulomatous disease caused by a dimorphic fungus, Paracoccidioides brasiliensis (Pb). To determine the influence of nitric oxide (NO) on this disease, we tested cis-[Ru(bpy)2(NO)SO3](PF6), ruthenium nitrosyl, which releases NO when activated by biological reducing agents, in BALB/c mice infected intravenously with Pb 18 isolate. In a previous study by our group, the fungicidal activity of ruthenium nitrosyl was evaluated in a mouse model of acute PCM, by measuring the immune cellular response (DTH), histopathological characteristics of the granulomatous lesions (and numbers), cytokines, and NO production. We found that cis-[Ru(bpy)2(NO)SO3](PF6)-treated mice were more resistant to infection, since they exhibited higher survival when compared with the control group. Furthermore, we observed a decreased influx of inflammatory cells in the lung and liver tissue of treated mice, possibly because of a minor reduction in fungal cell numbers. Moreover, an increased production of IL-10 and a decrease in TNF-alpha levels were detected in lung tissues of infected mice treated with cis-[Ru(bpy)2(NO)SO3](PF6). Immunohistochemistry showed that there was no difference in the number of VEGF- expressing cells. The animals treated with cis-[Ru(bpy)2(NO)SO3](PF6) showed high NO levels at 40 days after infection. These results show that NO is effectively involved in the mechanism that regulates the immune response in lung of Pb-infected mice. These data suggest that NO is a resistance factor during paracoccidioidomycosis by controlling fungal proliferation, influencing cytokine production, and consequently moderating the development of a strong inflammatory response.
Resumo:
Paracoccidioidomycosis has been known for over 100 years, and until now, there were only few estimates of the disease`s incidence. We aim to analyze 1,000 cases treated between 1960 and 1999 at Ribeirao Preto city, Sao Paulo, Brazil, where the disease`s incidence range detected was 1.6 to 3.7 cases per 100,000 habitants per year (mean = 2.7 cases/year). We observed a male to female ratio of 6:1 and an age distribution from 3 to 85 years. The acute/subacute form of the disease accounted for 25.4% of cases. Most of the patients (93.5%) had lived or worked in rural areas before the disease development. Smoking and alcoholism were reported by 64.7% and 37.2% of patients, respectively. Comorbidities identified included tuberculosis (8.3%), Chagas` disease (8.6%), and human immunodeficiency virus/acquired immunodeficiency syndrome (4.2%). The present study revealed an area in Brazil where paracoccidioidomycosis is hyperendemic (has the highest reported incidence of this disease); this endemic area is probably caused by geological and climatic conditions as well as intensive agriculture.
Resumo:
Trichophyton rubrum is a dermatophyte that infects human skin and nails. Its growth on keratin as its carbon source shifts the ambient pH from acidic to alkaline, which may be an efficient strategy for its successful infection and maintenance in the host. In this study, we used suppression subtractive hybridization to identify genes preferentially expressed in T rubrum incubated at either pH 5.0 or pH 8.0. The functional grouping of the 341 overexpressed unigenes indicated proteins putatively involved in diverse cellular processes, such as membrane remodeling, cellular transport, metabolism, cellular protection, fungal pathogenesis, gene regulation, interaction with the environment, and iron uptake. Although the basic metabolic machinery identified under both growth conditions seems to be functionally similar, distinct genes are upregulated at acidic or alkaline pHs. We also isolated a large number of genes of unknown function, probably unique to T rubrum or dermatophytes. Interestingly, the transcriptional profiling of several genes in a pacC mutant suggests that, in T rubrum, the transcription factor PacC has a diversity of metabolic functions, in response to either acidic or alkaline ambient pH. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Paracoccidioides brasiliensis rarely shows bone marrow involvement and its response to treatment with itraconazole in children needs further assessment. We describe here a child with a juvenile disseminated form of paracoccidioidomycosis, which showed reticuloendothelial system involvement and the presence of Paracoccidioides brasiliensis in the bone marrow. The patient showed an effective and rapid response to itraconazole therapy.
Resumo:
Carios mimon is an argasid tick common on Chiroptera, originally described from larvae collected on bats Mimon crenulatum from Bolivia and Eptesicus brasiliensis from Uruguay. Later it was also registered from Argentina and recently included among the Brazilian tick fauna. In Brazil, this species is very aggressive to man, resulting in intense inflammatory response and pain. It is known only by the larval description and its morphology resembles that from other species currently included into the genus Carios, formerly classified into the subgenus Alectorobius, genus Ornithodoros. Here we describe adults and redescribe the larva of C. mimon, based on light and scanning electron microscopy. Remarks about its morphological similarity with other species of this genus are also discussed. Molecular analysis inferred from a portion of the 16S rRNA mitochondrial gene placed C. mimon in a cluster supported by maximal bootstrap value (100%) with other argasid species (mostly bat parasites in the New World), which have been classified into either the genus Ornithodoros or Carios, depending on the Argasidae classification adopted by different authors.
Resumo:
From May 1997 to October 2000, 49 Sotalia guianensis (tucuxi dolphin) incidentally caught in fishing nets or stranded in Sao Paulo (SP) and Parana (PH) states in Brazil were necropsied. In total, 17 lungs, 35 stomachs, and 30 intestines were analyzed. Contents were washed through a sieve (mesh, 150 mm) and examined under a stereoscopic microscope for parasites. Histopathologic analyses were performed in the lungs of five infected dolphins. The nematode Halocereus brasiliensis was found in 88% of all lungs examined, inducing moderate-to-severe pneumonia. Braunina cordiformis, Anisakis sp., and acanthocephalans were found in the stomachs. The trematode Synthesium tursionis was the only parasite found in the intestines, and it was identified in 73% of the animals necropsied. No macroscopic lesions were seen due to parasites in the stomachs and intestines analyzed.
Resumo:
The immunossuppression caused by HIV infection makes the affected individuals more susceptible to some diseases including infections, neoplasms, or even the association between them. Kaposi sarcoma (KS) is the most common AIDS-related neoplasm, featured as an angioproliferative disorder. Its cause seems to be related to the human herpesvirus type 8 and it is usually associated with lower CD4+ T cell count. Oral involvement is frequent, presenting red to blue-purplish plaques, maculaes, and nodules. On the other hand, paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in Latin America, caused by Paracoccidioides brasiliensis. This mycosis is not commonly related to human immunodeficiency virus (HIV) infection, although PCM can be present in immunosuppression cases. Oral lesions, as granulomatous ulcers, are often identified in seropositive patients with PCM. A rare case, in which a male HIV-positive patient presented simultaneously Kaposi sarcoma and PCM in the same fragment of oral mucosa biopsy, is described. To the best of our knowledge, this concomitant association had not been previously described. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Paracoccidioidomycosis, the major systemic mycosis in Latin America, is caused by fungus Paracoccidioides brasiliensis. To analyze the influence of inducible nitric oxide synthase (iNOS) in this disease, iNOS-deficient (iNOS(-/-)) and wild-type (WT) mice were infected intravenously with P. brasiliensis 18 isolate. We found that, unlike WT mice, iNOS(-/-) mice did not control fungal proliferation, and began to succumb to infection by day 50 after inoculation of yeast cells. Typical inflammatory granulomas were found in WT mice, while, iNOS(-/-) mice presented incipient granulomas with intense inflammatory process and necrosis. Additionally, splenocytes from iNOS(-/-) mice did not produce nitric oxide, however, their proliferative response to Con-A was impaired, just like infected WT mice. Moreover, infected iNOS(-/-) mice presented a mixed pattern of immune response, releasing high levels of both Th1 (IL-12, IFN-gamma and TNF-alpha) and Th2 (IL-4 and IL-10) cytokines. These data suggest that the enzyme iNOS is a resistance factor during paracoccidioidomycosis by controlling fungal proliferation, by influencing cytokines production, and by appeasing the development of a high inflammatory response and consequently formation of necrosis. However, iNOS-derived nitric oxide seems not being the unique factor responsible for immunosuppression observed in infections caused by P. brasiliensis. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Paracoccidioidomycosis, a debilitating pulmonary mycosis, is caused by the dimorphic fungus Paracoccidioides brasiliensis. The infection results in the formation of granulomas containing viable yeast cells that are the fungal sources for disease reactivation. Because CD4(+)CD25(+) regulatory T cells (Tregs) are in the lesions of patients with paracoccidioidomycosis, the migration of Treg cells is dependent on the axis chemokine-chemokine receptors, and CCR5 ligands are produced in P. brasiliensis-induced lesions, we investigated the role of CCR5 in the control of the infection. The results showed that CCR5(-/-) mice are more efficient in controlling fungal growth and dissemination and exhibited smaller granulomas than wild-type (WT) mice. In the absence of CCR5, the percentage of CD4(+)CD25(+) T cells expressing Foxp3, glucocorticoid-induced TNFR (GITR), CD103, CD45(low), and CTLA-4 in the granulomas was significantly decreased. Interestingly, P. brasiliensis infection resulted in an absence of T cell proliferation in response to Con A in WT but not CCR5(-/-) mice that was abrogated by anti-CTLA-4 mAb and anti-GITR mAb. Moreover, the adoptive transfer of CD4(+)CD25(+) but not CD4(+)CD25(-) T cells from infected WT to infected CCR5(-/-) mice resulted in a significant increase in fungal load. Overall, CCR5 is a key receptor for the migration of Treg cells to the site of P. brasiliensis infections leading to down-modulation of effector immune response and the long-term presence of the fungus in the granulomas. Thus, a tight control of Treg cell migration to the granulomatous lesions could be an important mechanism for avoiding exacerbation and reactivation of the disease.