96 resultados para Larvae Diptera
Resumo:
The endemic Neotropical long-horned caddisfly subgenus Notalina (Neonotalina) Holzenthal contains nine described species, but its immature stages are unknown. In this paper the larvae and pupae of Notalina morsei Holzenthal 1986 from southeastern Brazil are described and illustrated. Larvae of the subgenus are easily recognized from other Neotropical leptocerids by the following characters: ventral apotome which is broad anteriorly and narrow posteriorly; the metanotum with three sclerites; the metasternum bearing 10-12 setae; the gill arrangement, usually including ventral and dorsal filaments from abdominal segments II to VI; and abdominal tergite IX with 6 long and 4 short setae. An updated key to known larvae of Neotropical Leptoceridae genera is provided.
Resumo:
Tipulomorpha (craneflies) comprise one of the largest subgroups of Diptera, but its phylogeny at different levels has been poorly explored. This study presents the most comprehensive cladistic analysis of the group ever made, with emphasis on the genera and subgenera of the subfamily Limnophilinae (Limoniidae), assumed to include some of the earliest lineages of Tipulomorpha sensu stricto and therefore important for the understanding of the early patterns in the evolution of the craneflies. Eighty-eight characters of the male imago were scored for 104 exemplar species. The most parsimonious trees were searched using implied weighting, in the framework of a sensitivity analysis with different values of k (2 to 6). The dataset based on the characters of adult male morphology showed high levels of homoplasy and yielded very incongruent and unstable phylogenetic results, which are very sensitive to changes in analytical parameters. In the preferred and most parsimonious phylogenetic hypothesis, the Pediciidae is the sister-group of all other Tipulomorpha sensu stricto. The results indicate the paraphyly of the Limoniidae with respect to the Cylindrotomidae and Tipulidae, which are considered sister-groups. The Limoniidae subfamilies Limnophilinae, Limoniinae and Chioneinae are considered non-monophyletic. The study allowed a reconstruction of the possible ground plan condition of selected features of the adult male morphology of craneflies. The genera/subgenera Epiphragma (Epiphragma), Acantholimnophila, Shannonomyia, Limnophila (Arctolimnophila), Eloeophila, Conosia, Polymera, Polymera (Polymerodes), Prionolabis, Eutonia, Phylidorea (Phylidorea), Metalimnophila, Gynoplistia (Cerozodia), Gynoplistia (Dirhipis), Nothophila, Pseudolimnophila (Pseudolimnophila), Pilaria and Ulomorpha are considered monophyletic, but in general are defined by combinations of very homoplastic character states. Two Temperate Gondwanan clades, (Tonnoirella + (Edwardsomyia + (Tinemyia + (Rhamphophila + (Nothophila))))) and ((Notholimnophila + Bergrothomyia) + (Mesolimnophila + (Chilelimnophila + Ctenolimnophila))) are recovered. The genera Limnophila, Neolimnomyia, Gynoplistia (sensu lato) and Hexatoma (sensu lato) are considered non-monophyletic. The systematic position and some morphological characters of `problematic` taxa, such as Dactylolabis, Elephantomyia, Helius and Atarba are discussed on the light of the proposed phylogeny and the analysis of the characters. Character states are richly illustrated. A detailed study of the morphology of the male genitalia is made, and several genera and species have the morphology of the male genitalia illustrated for the first time.
Resumo:
Recently we have shown that BhSGAMP-1 is a developmentally regulated reiterated gene that encodes an antimicrobial peptide (AMP) and is expressed exclusively in the salivary glands, at the end of the larval stage. We show, for the first time, that a gene for an AMP is directly activated by 20-OH ecdysone. This control probably involves the participation of short-lived repressor(s). We also found that the promoter of BhSGAMP-1 is not equipped with elements that respond to infection, provoked by the injection of microorganisms, in the salivary glands or in the fat body. We produced polyclonal antibodies against the synthetic peptide and found that the BhSGAMP-1 peptide is secreted in the saliva. The BhSGAMP-1 gene was also activated during the third larval molt. These facts confirm our hypothesis that this preventive system of defense was selected to produce an environment free of harmful microorganisms in the insect`s immediate vicinity, during molts. genesis 47:847-857, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
The insulin/insulin-like signaling (IIS) pathway is an evolutionarily conserved module in the control of body size and correlated organ growth in metazoans. In the highly eusocial bees, the caste phenotypes differ not only in size and several structural features but also in individual fitness and life history. We investigated the developmental expression profiles of genes encoding the two insulin-like peptides (AmILP-1 and AmILP-2) and the two insulin receptors (AmInR-1 and AmInR-2) predicted in the honey bee genome. Quantitative PCR analysis for queen and worker larvae in critical stages of caste development showed that AmILP-2 is the predominantly transcribed ILP in both castes, with higher expression in workers than in queens. Expression of both InR genes sharply declined in fourth instar queen larvae, but showed little modulation in workers. On first sight, these findings are non-intuitive, considering the higher growth rates of queens, but they can be interpreted as possibly antagonistic crosstalk between the IIS module and juvenile hormone. Analyzing AmInR-1 and AmInR-2 expression in ovaries of queen and worker larvae revealed low transcript levels in queens and a sharp drop in AmInR-2 expression in fifth instar worker larvae, indicating relative independence in tissue-specific versus overall IIS pathway activity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Gene amplification occurs in Bradysia hygida salivary glands, at the end of the fourth larval instar. The hormone 20-hydroxyecdysone (20E) triggers this process, which results in DNA puff formation. Amplified genes are activated in two distinct groups. The activity of the first group is dependent on high levels of 20E, while the second group needs low hormone levels. Consequently, the salivary glands of B. hygida constitute an interesting biological model to study how 20E, and its receptors, affect gene amplification and activity. We produced polyclonal antibodies against B. hygida EcR (BhEcR). In western blots a polypeptide of about 66 kDa was detected in salivary gland extracts. The antibodies were also used for indirect immune-localization of BhEcR in polytene chromosomes. RNA-polymerase II was also immune-detected. We did not detect the receptor in chromosome C where the first and second groups of DNA puffs form during DNA puff anlage formation, but it was present during puff expansion. During the active phase of both groups of DNA puffs, RNA polymerase II co-localized with BhEcR. After puff regression, these antigens were not detected. Apparently, EcR plays a direct role in the transcription of amplified genes, but its role in gene amplification remains enigmatic.
Resumo:
The honey bee disease American foulbrood (AFB) is a serious problem since its causative agent (Paenibacillus larvae) has become increasingly resistant to conventional antibiotics. The objective of this study was to investigate the in vitro activity of propolis collected from various states of Brazil against P. larvae. Propolis is derived from plant resins collected by honey bees (Apis mellifera) and is globally known for its antimicrobial properties and particularly valued in tropical regions. Tests on the activity of propolis against P. larvae were conducted both in Brazil and Minnesota, USA using two resistance assay methods that measured zones of growth inhibition due to treatment exposure. The propolis extracts from the various states of Brazil showed significant inhibition of P. larvae. Clear dose responses were found for individual propolis extracts, particularly between the concentrations of 1.7 and 0.12 mg propolis/treatment disk, but the source of the propolis, rather than the concentration, may be more influential in determining overall activity. Two of the three tested antibiotics (tylosin and terramycin) exhibited a greater level of inhibition compared to most of the Brazilian samples, which could be due to the low concentrations of active compounds present in the propolis extracts. Additionally, the majority of the Brazilian propolis samples were more effective than the few collected in MN, USA. Due to the evolution of resistance of P. larvae to conventional antibiotic treatments, this research is an important first step in identifying possible new active compounds to treat AFB in honey bee colonies. (C) 2007 Elsevier Inc. All rights reserved.