92 resultados para KALMAN FILTER


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Cognitive and attentional deficits in schizophrenia include impairment of the sensorimotor filter as measured by prepulse inhibition (PPI). In this way, the study of animals that naturally present low PPI responses could be a useful approach for screening new antipsychotic drugs. Several pieces of evidence suggest that dopamine and nitric oxide (NO) can modulate PPI but their role in those animals is unknown. Objectives: The aim of this study was to investigate the role of dopamine and NO in Wistar rats with naturally low PPI response. Methods: Male Wistar rats with low PPI responses received an i.p. injection of the antipsychotics haloperidol (0.1, 0.3 or 1 mg/kg) or clozapine (0.5, 1.5 or 5 mg/kg), the anxiolytic diazepam (1 or 3 mg/kg) or the NO synthase (NOS) inhibitors, N(G)- nitro-L-arginine (L-NOARG; 40 mg/kg, acutely or sub-chronically) or 7-Nitroindazole (7-NI; 3, 10 or 30 mg/kg). All animals were submitted to the PPI test 1 h after injection. Striatal and cortical dopamine, DOPAC, and noradrenaline levels of rats with low PPI responses were compared to rats with normal PPI responses. Results: We found increased levels of catecholamines on the striatum and prefrontal cortex of Wistar rats with low PPI. In these animals, both antipsychotics, typical and atypical, and NOS inhibitors significantly increased PPI. Conclusion: Taken together, our findings suggest that the low PPI phenotype may be driven by an over-active catecholamine system. Additionally, our results corroborate the hypothesis of dopamine and NO interaction on PPI modulation and suggest that Wistar rats with low PPI may represent an interesting non-pharmacological model to evaluate new potential antipsychotics. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Drugs that facilitate dopaminergic neurotransmission induce cognitive and attentional deficits which include inability to filter sensory input measured by prepulse inhibition (PPI) Methylphenidate, an amphetamine analog is used in the treatment of attention deficit hyperactivity disorder Given that nitric oxide (NO) modulates dopamine effect our aim is to analyze the nitric oxide synthase (NOS) and soluble guanylate cyclase (sGC) inhibitors effect on PPI disruption induced by methylphenidate The inhibitors effects were compared to those produced by haloperidol and clozapine Male Swiss mice received a first I p. Injection (one hour before testing), of either saline, or N(G) nitro L-arginine (10, 40 or 90 mg/kg) or 7-Nitroindazole (3, 10, 30 or 60 mg/kg). or oxadiazolo-quinoxalin (5 or 10 mg/kg). or haloperidol (1 mg/kg), or clozapine (5 mg/kg) Thirty min later mice received the second injection of either saline or methylphenidate (20 or 30 mg/kg) or amphetamine (5 or 10 mg/kg). One group of mice received intracerebroventricular 7-Nitroindazole (50 or 100 nM) followed by systemic administration of saline or methylphenidate (30 mg/kg) The results revealed a methylphenidate dose-dependent disruption of PPI comparable to amphetamine. The effect was prevented by either nitric oxide synthase or guanilate cyclase inhibitors or clozapine or haloperidol In conclusion, methylphenidate induced a dose-dependent PPI disruption in Swiss mice modulated by dopamine and NO/sGC. The results corroborate the hypothesis of dopamine and NO interacting to modulate sensorimotor gating through central nervous system. It may be useful to understand methylphenidate and other psychostimulants effects (C) 2009 Elsevier B.V All rights reserved