118 resultados para HOLOGRAPHY AND QUARK-GLUON PLASMAS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we demonstrated the fabrication of two-dimensional (2D) photonic crystals layers (2D-PCLs) by combining holographic recording and the evaporation of antimony-based glasses. Such materials present high refractive indices that can be tuned from 1.8 to 2.4, depending on the film composition; thus, they are interesting dielectric materials for fabrication of 2D-PCLs. The good quality of the obtained samples allowed the measurement of their PC properties through the well-defined Fano resonances that appear in the transmittance spectrum measurements at different incidence angles. The experimental results are in good agreement with the calculated band diagram for the hexagonal asymmetric structure. (C) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The parallel mutation-selection evolutionary dynamics, in which mutation and replication are independent events, is solved exactly in the case that the Malthusian fitnesses associated to the genomes are described by the random energy model (REM) and by a ferromagnetic version of the REM. The solution method uses the mapping of the evolutionary dynamics into a quantum Ising chain in a transverse field and the Suzuki-Trotter formalism to calculate the transition probabilities between configurations at different times. We find that in the case of the REM landscape the dynamics can exhibit three distinct regimes: pure diffusion or stasis for short times, depending on the fitness of the initial configuration, and a spin-glass regime for large times. The dynamic transition between these dynamical regimes is marked by discontinuities in the mean-fitness as well as in the overlap with the initial reference sequence. The relaxation to equilibrium is described by an inverse time decay. In the ferromagnetic REM, we find in addition to these three regimes, a ferromagnetic regime where the overlap and the mean-fitness are frozen. In this case, the system relaxes to equilibrium in a finite time. The relevance of our results to information processing aspects of evolution is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present rigorous upper and lower bounds for the momentum-space ghost propagator G(p) of Yang-Mills theories in terms of the smallest nonzero eigenvalue (and of the corresponding eigenvector) of the Faddeev-Popov matrix. We apply our analysis to data from simulations of SU(2) lattice gauge theory in Landau gauge, using the largest lattice sizes to date. Our results suggest that, in three and in four space-time dimensions, the Landau gauge ghost propagator is not enhanced as compared to its tree-level behavior. This is also seen in plots and fits of the ghost dressing function. In the two-dimensional case, on the other hand, we find that G(p) diverges as p(-2-2 kappa) with kappa approximate to 0.15, in agreement with A. Maas, Phys. Rev. D 75, 116004 (2007). We note that our discussion is general, although we make an application only to pure gauge theory in Landau gauge. Our simulations have been performed on the IBM supercomputer at the University of Sao Paulo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the evolution of dense clumps and provide an argument that the existence of the clumps is not limited by their crossing times. We claim that the lifetimes of the clumps are determined by turbulent motions on a larger scale, and we predict the correlation of clump lifetime with column density. We use numerical simulations to successfully test this relation. In addition, we study the morphological asymmetry and the magnetization of the clumps as functions of their masses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, quasi-diabatic two-phase flow pattern visualizations and measurements of elongated bubble velocity, frequency and length were performed. The tests were run for R134a and R245fa evaporating in a stainless steel tube with diameter of 2.32 mm, mass velocities ranging from 50 to 600 kg/m(2) s and saturation temperatures of 22 degrees C, 31 degrees C and 41 degrees C. The tube was heated by applying a direct DC current to its surface. Images from a high-speed video-camera (8000 frames/s) obtained through a transparent tube just downstream the heated sections were used to identify the following flow patterns: bubbly, elongated bubbles, churn and annular flows. The visualized flow patterns were compared against the predictions provided by Barnea et al. (1983) [1], Felcar et al. (2007) [10], Revellin and Thome (2007) [3] and Ong and Thome (2009) [11]. From this comparison, it was found that the methods proposed by Felcar et al. (2007) [10] and Ong and Thome (2009) [1] predicted relatively well the present database. Additionally, elongated bubble velocities, frequencies and lengths were determined based on the analysis of high-speed videos. Results suggested that the elongated bubble velocity depends on mass velocity, vapor quality and saturation temperature. The bubble velocity increases with increasing mass velocity and vapor quality and decreases with increasing saturation temperature. Additionally, bubble velocity was correlated as linear functions of the two-phase superficial velocity. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents results of an experimental investigation carried out to determine the effects of the surface roughness of different materials on nucleate boiling heat transfer of refrigerants R-134a and R-123. Experiments have been performed over cylindrical surfaces of copper, brass and stainless steel. Surfaces have been treated by different methods in order to obtain an average roughness, Ra, varying from 0.03 mu m to 10.5 mu m. Boiling curves at different reduced pressures have been raised as part of the investigation. The obtained results have shown significant effects of the surface material, with brass being the best performing and stainless steel the worst. Polished surfaces seem to present slightly better performance than the sand paper roughened. Boiling on very rough surfaces presents a peculiar behavior characterized by good thermal performance at low heat fluxes, the performance deteriorating at high heat fluxes with respect to smoother surfaces. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation of nucleate boiling on a vertical array of horizontal plain tubes is presented in this paper. Experiments were performed with refrigerant RI 23 at reduced pressures varying from 0.022 to 0.64, tube pitch to diameter ratios of 1.32, 1.53 and 2.00, and heat fluxes from 0.5 to 40 kW/m(2). Brass tubes with external diameters of 19.05 mm and average roughness of 0.12 mu m were used in the experiments. The effect of the tube spacing on the local heat transfer coefficient along the tube array was negligible within the present range of experimental conditions. For partial nucleate boiling, characterized by low heat fluxes, and low reduced pressures, the tube positioning shows a remarkable effect on the heat transfer coefficient. Based on these data, a general correlation for the prediction of the nucleate boiling heat transfer coefficient on a vertical array of horizontal tubes under flooded conditions was proposed. According to this correlation, the ratio between the heat transfer coefficients of a given tube and the lowest tube in the array depends only on the tube row number, the reduced pressure and the heat flux. By using the proposed correlation, most of the experimental heat transfer coefficients obtained in the present study were predicted within +/- 15%. The new correlation compares reasonably well with independent data from the literature. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to model the synchronization of brain signals, a three-node fully-connected network is presented. The nodes are considered to be voltage control oscillator neurons (VCON) allowing to conjecture about how the whole process depends on synaptic gains, free-running frequencies and delays. The VCON, represented by phase-locked loops (PLL), are fully-connected and, as a consequence, an asymptotically stable synchronous state appears. Here, an expression for the synchronous state frequency is derived and the parameter dependence of its stability is discussed. Numerical simulations are performed providing conditions for the use of the derived formulae. Model differential equations are hard to be analytically treated, but some simplifying assumptions combined with simulations provide an alternative formulation for the long-term behavior of the fully-connected VCON network. Regarding this kind of network as models for brain frequency signal processing, with each PLL representing a neuron (VCON), conditions for their synchronization are proposed, considering the different bands of brain activity signals and relating them to synaptic gains, delays and free-running frequencies. For the delta waves, the synchronous state depends strongly on the delays. However, for alpha, beta and theta waves, the free-running individual frequencies determine the synchronous state. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The double-frequency jitter is one of the main problems in clock distribution networks. In previous works, sonic analytical and numerical aspects of this phenomenon were studied and results were obtained for one-way master-slave (OWMS) architectures. Here, an experimental apparatus is implemented, allowing to measure the power of the double-frequency signal and to confirm the theoretical conjectures. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models of warped extra dimensions with custodial symmetry usually predict the existence of a light Kaluza-Klein fermion arising as a partner of the right-handed top quark, sometimes called light custodians which we will denote (b) over tilde (R). The production of these particles at the LHC can give rise to multi-W events which could be observed in same-sign dilepton channels, but its mass reconstruction is challenging. In this paper we study the possibility of finding a signal for the pair production of this new particle at the LHC focusing on a rarer, but cleaner decay mode of a light custodian into a Z boson and a b-quark. In this mode it would be possible to reconstruct the light custodian mass. In addition to the dominant standard model QCD production processes, we include the contribution of a Kaluza-Klein gluon first mode. We find that (b) over tilde (R) stands out from the background as a peak in the bZ invariant mass. However, when taking into account only the electronic and muonic decay modes of the Z boson and b-tagging efficiencies, the LHC will have access only to the very light range of masses, m((b) over tilde) = O(500) GeV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primordial Quark Nuggets, remnants of the quark-hadron phase transition, may be hiding most of the baryon number in superdense chunks have been discussed for years always from the theoretical point of view. While they seemed originally fragile at intermediate cosmological temperatures, it became increasingly clear that they may survive due to a variety of effects affecting their evaporation (surface and volume) rates. A search of these objects have never been attempted to elucidate their existence. We discuss in this note how to search directly for cosmological fossil nuggets among the small asteroids approaching Earth. `Asteroids` with a high visible-to-infrared flux ratio, constant lightcurves and devoid of spectral features are signals of an actual possible nugget nature. A viable search of very definite primordial quark nugget features can be conducted as a spinoff of the ongoing/forthcoming NEAs observation programmes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho & Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz-Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The TCABR data analysis and acquisition system has been upgraded to support a joint research programme using remote participation technologies. The architecture of the new system uses Java language as programming environment. Since application parameters and hardware in a joint experiment are complex with a large variability of components, requirements and specification solutions need to be flexible and modular, independent from operating system and computer architecture. To describe and organize the information on all the components and the connections among them, systems are developed using the extensible Markup Language (XML) technology. The communication between clients and servers uses remote procedure call (RPC) based on the XML (RPC-XML technology). The integration among Java language, XML and RPC-XML technologies allows to develop easily a standard data and communication access layer between users and laboratories using common software libraries and Web application. The libraries allow data retrieval using the same methods for all user laboratories in the joint collaboration, and the Web application allows a simple graphical user interface (GUI) access. The TCABR tokamak team in collaboration with the IPFN (Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa) is implementing this remote participation technologies. The first version was tested at the Joint Experiment on TCABR (TCABRJE), a Host Laboratory Experiment, organized in cooperation with the IAEA (International Atomic Energy Agency) in the framework of the IAEA Coordinated Research Project (CRP) on ""Joint Research Using Small Tokamaks"". (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an overview of the results obtained during the Joint Experiments organized in the framework of the IAEA Coordinated Research Project on `Joint Research Using Small Tokamaks` that have been carried out on the tokamaks CASTOR at IPP Prague, Czech Republic (2005), T-10 at RRC `Kurchatov Institute`, Moscow, Russia (2006), and the most recent one at ISTTOK at IST, Lisbon, Portugal, in 2007. Experimental programmes were aimed at diagnosing and characterizing the core and the edge plasma turbulence in a tokamak in order to investigate correlations between the occurrence of transport barriers, improved confinement, electric fields and electrostatic turbulence using advanced diagnostics with high spatial and temporal resolution. On CASTOR and ISTTOK, electric fields were generated by biasing an electrode inserted into the edge plasma and an improvement of the global particle confinement induced by the electrode positive biasing has been observed. Geodesic acoustic modes were studied using heavy ion beam diagnostics on T-10 and ISTTOK and correlation reflectometry on T-10. ISTTOK is equipped with a gallium jet injector and the technical feasibility of gallium jets interacting with plasmas has been investigated in pulsed and ac operation. The first Joint Experiments have clearly demonstrated that small tokamaks are suitable for broad international cooperation to conduct dedicated joint research programmes. Other activities within the IAEA Coordinated Research Project on Joint Research Using Small Tokamaks are also overviewed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-frequency extensions of magnetorotational instability driven by the Velikhov effect beyond the standard magnetohydrodynamic (MHD) regime are studied. The existence of the well-known Hall regime and a new electron inertia regime is demonstrated. The electron inertia regime is realized for a lesser plasma magnetization of rotating plasma than that in the Hall regime. It includes the subregime of nonmagnetized electrons. It is shown that, in contrast to the standard MHD regime and the Hall regime, magnetorotational instability in this subregime can be driven only at positive values of dln Omega/dlnr, where Omega is the plasma rotation frequency and r is the radial coordinate. The permittivity of rotating plasma beyond the standard MHD regime, including both the Hall regime and the electron inertia regime, is calculated.