97 resultados para Forager bees
Resumo:
The floral phenology and reproductive biology of six sympatric arboreal Myrtaceae species were studied in the coastal plain forest (Ubatuba, Brazil, 44 degrees 48`W 23 degrees 22`S), from September 1999 to April 2002. Flowering started in the transition from the driest to the most humid season (Sep/Oct) and lasted until March. The sequence with which the species flowered each year was consistently the same. However, the timing of flowering onset, peak, end, and overlap differed from one year to another. Myrtaceae species were classified as xenogamic according to the pollen:ovule ratios, but two of them seem to present some degree of self-compatibility. Flowers of all species opened at sunrise and lasted for I day. Bombus morio (Apidae: Bombini) was the most common visitor followed by Melipona rufiventris (Apidae: Meliponini). Buzz pollination in Myrtaceae was common at the study area and seems to be related to bees` behaviour and to some aspects of flowers` morphology.
Resumo:
Krameria plants are found in arid regions of the Americas and present a floral system that attracts oil-collecting bees. Niche modeling and multivariate tools were applied to examine ecological and geographical aspects of the 18 species of this genus, using occurrence data obtained from herbaria and literature. Niche modeling showed the potential areas of occurrence for each species and the analysis of climatic variables suggested that North American species occur mostly in deserted or xeric ecoregions with monthly precipitation below 140 mm and large temperature ranges. South American species are mainly found in deserted ecoregions and subtropical savannas where monthly precipitation often exceeds 150 mm and temperature ranges are smaller. Principal Component Analysis (PCA) performed with values of temperature and precipitation showed that the distribution limits of Krameria species are primarily associated with maximum and minimum temperatures. Modeling of Krameria species proved to be a useful tool for analyzing the influence of the ecological niche variables in the geographical distribution of species, providing new information to guide future investigations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Euglossa fimbriata is a euglossine species widely distributed in Brazil and occurring primarily in Atlantic Forest remnants. In this study, the genetic mitochondrial structure of E. fimbriata from six Atlantic Forest fragments was studied by RFLP analysis of three PCR-amplified mtDNA gene segments (16S, COI-COII, and cyt b). Ten composite haplotypes were identified, six of which were exclusive and represented singleton mitotypes. Low haplotype diversity (0.085-0.289) and nucleotide diversity (0.000-0.002) were detected within samples. AMOVA partitioned 91.13% of the overall genetic variation within samples and 8.87% (I center dot(st) = 0.089; P < 0.05) among samples. Pairwise comparisons indicated high levels of differentiation among some pairs of samples (I center dot(st) = 0.161-0.218; P < 0.05). These high levels indicate that these populations of E. fimbriata, despite their highly fragmented landscape, apparently have not suffered loss of genetic variation, suggesting that this particular population is not currently endangered.
Resumo:
Stingless bees of the genus Partamona are distributed from southern Mexico to southern Brazil. This genus has been subject to different approaches to solve questions concerning general biology, taxonomy, systematics and biogeography, but population studies applying molecular techniques are inexistent. We analyzed the genetic structure of P. helleri across its geographic distribution along the coastal Atlantic tropical rainforest in Brazil. Ten mtDNA haplotypes were observed in 47 colonies of P. helleri of which some were exclusive and others shared among geographic sub-groups. Statistical analysis showed high genetic differentiation between geographic areas sampled. Fragmentation of the Atlantic forest during Pleistocene glaciations is discussed as a possible cause of the present haplotype distribution and frequency.
Resumo:
The destruction of Brazilian natural habitats has reduced bee populations and negative impacts of native flora pollination have been noticed. This work describes the isolation and characterization of microsatellite loci and evaluates them as molecular markers to study genetic variability of the stingless bee Plebeia remota. A microsatellite enriched genomic library was constructed and 15 primer pairs were designed for this species. The survey was conducted by analyzing 21 unrelated individuals. Genetic diversity indexes were calculated. The mean allelic richness was 6.3, the observed heterozygosity was 0.568, and the percentage of polymorphic loci was 93.33%. Also the primers were tested in cross-species amplification and showed promising results for P. droryana, P. emerina, P. lucii, P. meridionalis, P. pugnax, and P. saiqui. The microsatellite loci described here will be useful to evaluate genetic variability of stingless bees, and certainly will improve our knowledge about population dynamics especially in threatened environments.
Resumo:
We see today many efforts to quantify biodiversity in different biomes. It is very important then to develop and to apply other methodologies that allow us to assess biodiversity. Here we present an example of application of three tools with this goal. We analyzed two populations of Plebeia remota from two distinct biomes that already showed several differences in morphology and behavior. Based on these differences, it has been suggested that the populations of Cunha and Prudentopolis do not represent a single species. In order to verify the existence or absence of gene flow between these two groups, we characterized the patterns of mtDNA through RFLP, the patterns of wing venation through geometric morphometry, and the cuticular hydrocarbons through gas chromatography-mass spectrometry. We used bees collected in these two locations and also from colonies which have being kept for around 9 years at Sao Paulo University. We found six different haplotypes in these specimens, of which three of them occurred exclusively in the population of Cunha and three only in the Prudentopolis population. The fact that the populations do not share haplotypes suggests no maternal gene flow between them. The two populations were differentiated by the pattern of the wing veins. They also had different mixtures of cuticle hydrocarbons. Furthermore it was shown that the colonies kept at the university did not hybridize. These two groups may constitute different species. We also show here the importance of using other methodologies than traditional taxonomy to assess and understand biodiversity, especially in bees.
Resumo:
Propolis, a natural product of plant resins, is used by the bees to seal holes in their honeycombs and protect the hive entrance. However, propolis has also been used in folk medicine for centuries. Here, we apply the power of Saccharomyces cerevisiae as a model organism for studies of genetics, cell biology, and genomics to determine how propolis affects fungi at the cellular level. Propolis is able to induce an apoptosis cell death response. However, increased exposure to propolis provides a corresponding increase in the necrosis response. We showed that cytochrome c but not endonuclease G (Nuc1p) is involved in propolis-mediated cell death in S. cerevisiae. We also observed that the metacaspase YCA1 gene is important for propolis-mediated cell death. To elucidate the gene functions that may be required for propolis sensitivity in eukaryotes, the full collection of about 4,800 haploid S. cerevisiae deletion strains was screened for propolis sensitivity. We were able to identify 138 deletion strains that have different degrees of propolis sensitivity compared to the corresponding wild-type strains. Systems biology revealed enrichment for genes involved in the mitochondrial electron transport chain, vacuolar acidification, negative regulation of transcription from RNA polymerase II promoter, regulation of macroautophagy associated with protein targeting to vacuoles, and cellular response to starvation. Validation studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis.