117 resultados para Electrochemical immunoassay
Resumo:
The present review paper describes the main features of nickel hydroxide modified electrodes covering its structural and electrochemical behavior and the newest advances promoted by nanostructured architectures. Important aspects such as synthetic procedures and characterization techniques such as X-Ray diffraction, Raman and Infrared spectroscopy, Electronic Microscopy and many others are detailed herein. The most important aspect concerning nickel hydroxide is related to its great versatility covering different fields in electrochemical-based devices such as batteries, electrocatalytic systems and electrochromic electrodes, the fundamental issues of these devices are also commented. Finally, some of the newest advances achieved in each field by the incorporation of nanomaterials will be shown.
Resumo:
The [Ru3O(Ac)6(py)2(CH3OH)]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.
Resumo:
Analysis at microenvironments, like single cells or in minute volumes (nL), is an area of great interest for analytical and biological sciences. Measurements at these experimental conditions demand analytical tools (microelectrodes) capable of monitoring with rapid response, good resolution and minimal perturbation of the system. The major drawbacks in producing these microscopic electrodes have been largely overcome, principally due to the development of new fabrication methods. In this review, these procedures are described with emphasis to those devoted to the construction of microelectrodes for application in microenvironments. Examples of our efforts to use these devices as effective electrochemical sensors are also addressed.
Resumo:
Foi estudado o comportamento eletroquímico a 37°C do aço inoxidável ISO 5832-9, em meios de NaCl 0,9 %, de Ringer Lactato e meio mínimo de Eagle (MEM), por voltametria linear e análises da superfície por microscopia eletrônica de varredura (MEV) e por espectroscopia por dispersão de energia (EDS). Foram feitos ensaios mecânicos e testes de toxicidade. O aço ISO 5832-9 se encontra passivado no potencial de corrosão e não apresenta corrosão por pite nos três meios estudados em toda faixa de potencial investigada, desde o potencial de corrosão até 50 mV acima do potencial de transpassivação. Em meio de MEM, no entanto, as análises por MEV e EDS mostraram que o referido aço, nesse valor mais elevado de potencial, apresentou um comportamento diferente, com perda das inclusões de óxido de manganês. Os potenciais de corrosão, Ecorr (potencial de circuito aberto estacionário) bem como os valores de densidade de corrente de passivação, variaram na seguinte ordem: Ecorr, RL < Ecorr, NaCl < Ecorr, MEM. e jMEM << jRL ≅ jNaCl. No ensaio de citotoxicidade, o aço foi caracterizado como não-tóxico.
Resumo:
A new tetraruthenated copper(II)-tetra(3,4-pyridyl)porphyrazine species, [CuTRPyPz]4+, has been synthesized and fully characterized by means of analytical, spectroscopic and electrochemical techniques. This À-conjugated system contrasts with the related meso-tetrapyridylporphyrins by exhibiting strong electronic interaction between the coordinated peripheral complexes and the central ring. Based on favorable À-stacking and electrostatic interactions, layer-by-layer assembled films were successfully generated from the appropriate combination of [CuTRPyPz]4+ with copper(II)-tetrasulfonated phtalocyanine, [CuTSPc]4-. Their conducting and electrocatalytic properties were investigated by means of impedance spectroscopy and rotating disc voltammetry, exhibiting metallic behavior near the Ru(III/II) redox potential, as well as enhanced catalytic activity for the oxidation of nitrite and sulphite ions.
Resumo:
This work describes the infrared spectroscopy characterization and the charge compensation dynamics in supramolecular film FeTPPZFeCN derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) with hexacyanoferrate, as well as the hybrid film formed by FeTPPZFeCN and polypyrrole (PPy). For supramolecular film, it was found that anion flux is greater in a K+ containing solution than in Li+ solution, which seems to be due to the larger crystalline ionic radius of K+. The electroneutralization process is discussed in terms of electrostatic interactions between cations and metallic centers in the hosting matrix. The nature of the charge compensation process differs from others modified electrodes based on Prussian blue films, where only cations such as K+ participate in the electroneutralization process. In the case of FeTPPZFeCN/PPy hybrid film, the magnitude of the anions’s flux is also dependent on the identity of the anion of the supporting electrolyte.
Resumo:
Blends formed by electrochemical polymerization of polypyrrole (PPy) into polyacrylamide (PAAm) hydrogels were used as devices for controlled drug release. The influence of several parameters in the synthesis, such as type of hydrogel matrix and polymerization conditions was studied by using a fractional factorial design. The final goal was to obtain an adequate device for use in controlled release tests, based on electrochemical potential control. For controlled release tests, Safranin was used as model drug and release curves (amount of drug vs. time) have shown that these blends are promising materials for this use. The optimized blends obtained were characterized by cyclic voltammetry and Raman spectroscopy.
Resumo:
Objective. To assess the relationship between cortisol concentrations in the last trimester of pregnancy and systemic vascular resistance — SVR in childhood. Materials and methods. This study is part of a cohort involving 130 Brazilian pregnant women and their children, ages 5 to 7 years. Maternal cortisol was determined in saliva by an enzyme immunoassay utilizing the mean concentration of 9 samples of saliva (3 in each different day), collected at the same time, early in the morning. SVR was assessed by the HDI/PulseWave CR-2000 Cardiovascular Profiling System®. Socioeconomic and demographic characteristics and life style factors were determined by a questionnaire. The nutritional status of the women and children was assessed by the body mass index — BMI. The association between maternal cortisol and SVR in childhood was calculated by multivariate linear regression analysis. Results.There were statistically significant associations between maternal cortisol and SVR (p = 0.043) and BMI-z score of the children (p = 0.027), controlling for maternal BMI, birth weight, age, and gender of the children. Conclusion. As far as we know this is the first study in the literature assessing the association between cortisol concentrations in pregnancy and SVR in childhood. Overall, the data suggest that exposure to excess glucocorticoid in the prenatal period is associated to vascular complications in childhood, predisposing to cardiovascular diseases in later life
Resumo:
A new flow procedure based on multicommutation with chemiluminometric detection was developed to quantify gentamicin sulphate in pharmaceutical formulations. This approach is based on gentamicin's ability to inhibit the chemiluminometric reaction between luminol and hypochlorite in alkaline medium, causing a decrease in the analytical signal. The inhibition of the analytical signal is proportional to the concentration of gentamicin sulphate, within a linear range of 1 to 4 mu g mL(-1) with a coefficient variation <3%. A sample throughput of 55 samples h(-1) was obtained. The developed method is sensitive, simple, with low reagent consumption, reproducible, and inexpensive, and when applied to the analysis of pharmaceutical formulations (eye drops and injections) it gave results with RSD between 1.10 and 4.40%.
Resumo:
Fin field effect transistors (FinFETS) are silicon-on-insulator (SOI) transistors with three-dimensional structures. As a result of some fabrication-process limitations (as nonideal anisotropic overetch) some FinFETs have inclined surfaces, which results in trapezoidal cross sections instead of rectangular sections, as expected. This geometric alteration results in some device issues, like carrier profile, threshold voltage, and corner effects. This work analyzes these consequences based on three-dimensional numeric simulation of several dual-gate and triple-gate FinFETs. The simulation results show that the threshold voltage depends on the sidewall inclination angle and that this dependence varies according to the body doping level. The corner effects also depend on the inclination angle and doping level. (C) 2008 The Electrochemical Society.
Resumo:
The synthesis of [Ru(NO(2)) L(bpy)(2)](+) (bpy = 2,2'-bipyridine and L = pyridine (py) and pyrazine (pz)) can be accomplished by addition of [Ru(NO) L(bpy) 2](PF(6))(3) to aqueous solutions of physiological pH. The electrochemical processes of [Ru(NO2) L(bpy) 2]+ in aqueous solution were studied by cyclic voltammetry and differential pulse voltammetry. The anodic scan shows a peak around 1.00 V vs. Ag/AgCl attributed to the oxidation process centered on the metal ion. However, in the cathodic scan a second peak around-0.60 V vs. Ag/AgCl was observed and attributed to the reduction process centered on the nitrite ligand. The controlled reduction potential electrolysis at-0.80 V vs. Ag/AgCl shows NO release characteristics as judged by NO measurement with a NO-sensor. This assumption was confirmed by ESI/MS(+) and spectroelectrochemical experiment where cis-[Ru(bpy)(2)L(H(2)O)](2+) was obtained as a product of the reduction of cis-[Ru(II)(NO(2)) L(bpy)(2)](+). The vasorelaxation observed in denuded aortic rings pre-contracted with 0.1 mu mol L(-1) phenylephrine responded with relaxation in the presence of cis-[RuII(NO2) L(bpy) 2]+. The potential of rat aorta cells to metabolize cis-[RuII(NO(2)) L(bpy)(2)](+) was also followed by confocal analysis. The obtained results suggest that NO release happens by reduction of cis-[RuII(NO(2)) L(bpy)(2)](+) inside the cell. The maximum vasorelaxation was achieved with 1 x 10(-5) mol L(-1) of cis-[RuII(NO(2)) L(bpy)(2)](+) complex.
Resumo:
Chemical reactivity, photolability, and computational studies of the ruthenium nitrosyl complex with a substituted cyclam, fac-[Ru(NO)Cl(2)(kappa(3)N(4),N(8),N(11)(1-carboxypropyl)cyclam)]Cl center dot H(2)O ((1-carboxypropyl) cyclam = 3-(1,4,8,11-tetraazacyclotetradecan-1-yl) propionic acid)), (I) are described. Chloride ligands do not undergo aquation reactions (at 25 degrees C, pH 3). The rate of nitric oxide (NO) dissociation (k(obs-NO)) upon reduction of I is 2.8 s(-1) at 25 +/- 1 degrees C (in 0.5 mol L(-1) HCl), which is close to the highest value found for related complexes. The uncoordinated carboxyl of I has a pK(a) of similar to 3.3, which is close to that of the carboxyl of the non coordinated (1-carboxypropyl) cyclam (pK(a) = 3.4). Two additional pK(a) values were found for I at similar to 8.0 and similar to 11.5. Upon electrochemical reduction or under irradiation with light (lambda(irr) = 350 or 520 nm; pH 7.4), I releases NO in aqueous solution. The cyclam ring N bound to the carboxypropyl group is not coordinated, resulting in a fac configuration that affects the properties and chemical reactivities of I, especially as NO donor, compared with analogous trans complexes. Among the computational models tested, the B3LYP/ECP28MDF, cc-pVDZ resulted in smaller errors for the geometry of I. The computational data helped clarify the experimental acid-base equilibria and indicated the most favourable site for the second deprotonation, which follows that of the carboxyl group. Furthermore, it showed that by changing the pH it is possible to modulate the electron density of I with deprotonation. The calculated NO bond length and the Ru/NO charge ratio indicated that the predominant canonical structure is [Ru(III)NO], but the Ru-NO bond angles and bond index (b.i.) values were less clear; the angles suggested that [Ru(II)NO(+)] could contribute to the electronic structure of I and b.i. values indicated a contribution from [Ru(IV)NO(-)]. Considering that some experimental data are consistent with a [Ru(II)NO(+)] description, while others are in agreement with [Ru(III)NO], the best description for I would be a linear combination of the three canonical forms, with a higher weight for [Ru(II)NO(+)] and [Ru(III)NO].
Resumo:
A series of photosensitizers (PS), which are meso-substituted tetra-cationic porphyrins, was synthesized in order to study the role of amphiphilicity and zinc insertion in photodynamic therapy (PDT) efficacy. Several properties of the PS were evaluated and compared within the series including photophysical properties (absorption spectra, fluorescence quantum yield Phi(f), and singlet oxygen quantum yield Phi(Delta)), uptake by vesicles, mitochondria and HeLa cells, dark and phototoxicity in HeLa cells. The photophysical properties of all compounds are quite similar (Phi(f) <= 0.02; Phi(Delta) similar to 0.8). An increase in lipophilicity and the presence of zinc in the porphyrin ring result in higher vesicle and cell uptake. Binding in mitochondria is dependent on the PS lipophilicity and on the electrochemical membrane potential, i.e., in uncoupled mitochondria PS binding decreases by up to 53%. The porphyrin substituted with octyl groups (TC8PyP) is the compound that is most enriched in mitochondria, and its zinc derivative (ZnTC8PyP) has the highest global uptake. The stronger membrane interaction of the zinc-substituted porphyrins is attributed to a complexing effect with phosphate groups of the phospholipids. Zinc insertion was also shown to decrease the interaction with isolated mitochondria and with the mitochondria of HeLa cells, an effect that has been explained by the particular characteristics of the mitochondrial internal membrane. Phototoxicity was shown to increase proportionally with membrane binding efficiency, which is attributed to favorable membrane interactions which allow more efficient membrane photooxidation. For this series of compounds, photodynamic efficiency is directly proportional to the membrane binding and cell uptake, but it is not totally related to mitochondrial targeting.
Resumo:
Background. Recent studies have sought to describe HIV infection and transmission characteristics around the world. Identification of early HIV-1 infection is essential to proper surveillance and description of regional transmission trends. In this study we compare people recently infected (RI) with HIV-1, as defined by Serologic Testing Algorithm for Recent HIV Seroconversion (STARHS), to those with chronic infection. Methodology/Principal Findings. Subjects were identified from 2002-2004 at four testing sites in Sao Paulo. Of 485 HIV-1-positive subjects, 57 (12%) were defined as RI. Of the participants, 165 (34.0%) were aware of their serostatus at the time of HIV-1 testing. This proportion was statistically larger (p<0.001) among the individuals without recent infection (n = 158, 95.8%) compared to 7 individuals (4.2%) with recently acquired HIV-1 infection. In the univariate analysis, RI was more frequent in,25 and >59 years-old age strata (p < 0.001). The majority of study participants were male (78.4%), 25 to 45 years-old (65.8%), white (63.2%), single (61.7%), with family income of four or more times the minimum wage (41.0%), but with an equally distributed educational level. Of those individuals infected with HIV-1, the predominant route of infection was sexual contact (89.4%), with both hetero (47.5%) and homosexual (34.5%) exposure. Regarding sexual activity in these individuals, 43.9% reported possible HIV-1 exposure through a seropositive partner, and 49.4% reported multiple partners, with 47% having 2 to 10 partners and 37.4% 11 or more; 53.4% of infected individuals reported condom use sometimes; 34.2% reported non-injecting, recreational drug use and 23.6% were reactive for syphilis by VDRL. Subjects younger than 25 years of age were most vulnerable according to the multivariate analysis. Conclusions/Significance. In this study, we evaluated RI individuals and discovered that HIV-1 has been spreading among younger individuals in Sao Paulo and preventive approaches should, therefore, target this age stratum.
Resumo:
The combination of metallic phthalocyanines (MPcs) and biomolecules has been explored in the literature either as mimetic systems to investigate molecular interactions or as supporting layers to immobilize biomolecules. Here, Langmuir-Blodgett (LB) films containing the phospholipid dimyristoyl phosphatidic acid (DMPA) mixed either with iron phthalocyanine (FePc) or with lutetium bisphthalocyanine (LuPc(2)) were applied as ITO modified-electrodes in the detection of catechol using cyclic voltammetry. The mixed Langmuir films of FePc + DMPA and LuPc(2) + DMPA displayed surface-pressure isotherms with no evidence of molecular-level interactions. The Fourier Transform Infrared (FTIR) spectra of the multilayer LB films confirmed the lack of interaction between the components. The DMPA and the FePc molecules were found to be oriented perpendicularly to the substrate, while LuPc(2) molecules were randomly organized. The phospholipid matrix induced a remarkable electrocatalytic effect on the phthalocyanines; as a result the mixed LB films deposited on ITO could be used to detect catechol with detection limits of 4.30 x 10(-7) and 3.34 x 10(-7) M for FePc + DMPA and LuPc(2) + DMPA, respectively. Results from kinetics experiments revealed that ion diffusion dominated the response of the modified electrodes. The sensitivity was comparable to that of other non-enzymatic sensors, which is sufficient to detect catechol in the food industry. The higher stability of the electrochemical response of the LB films and the ability to control the molecular architecture are promising for further studies with incorporation of biomolecules.