157 resultados para Diversion structures (Hydraulic engineering)
Resumo:
This study verifies the potential applicability of horizontal-flow anaerobic immobilized biomass (HAIB) reactors to pentachlorophenol (PCP) dechlorination. Two bench-scale HAIB reactors (R1 and R2) were filled with cubic polyurethane foam matrices containing immobilized anaerobic sludge. The reactors were then continuously fed with synthetic wastewater consisting of PCP, glucose, acetic acid, and formic acid as co-substrates for PCP anaerobic degradation. Before being immobilized in polyurethane foam matrices, the biomass was exposed to wastewater containing PCP in reactors fed at a semi-continuous rate of 2.0 mu g PCP g(-1) VS. The applied PCP loading rate was increased from 0.05 to 2.59 mg PCP l(-1) day(-1) for RI, and from 0.06 to 4.15 mg PCP l(-1) day(-1) for R2. The organic loading rates (OLR) were 1.1 and 1.7 kg COD m(-3) day(-1) at hydraulic retention times (HRT) of 24 h for R1 and 18 In for R2. Under such conditions, chemical oxygen demand (COD) removal efficiencies of up to 98% were achieved in the HAIB reactors. Both reactors exhibited the ability to remove 97% of the loaded PCP. Dichlorophenol (DCP) was the primary chlorophenol detected in the effluent. The adsorption of PCP and metabolites formed during PCP degradation in the packed bed was negligible for PCP removal efficiency. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports on the design of a new reactor configuration - an upflow fixed-bed combined anaerobic-aerobic reactor - can operate as a single treatment unit for the removal of nitrogen (approximate to 150 mg N/L) and organic matter (approximate to 1300 mg COD/L) from Lysine plant wastewater. L-Lysine, an essential amino acid for animal nutrition, is produced by fermentation from natural raw materials of agricultural origin, thus generating wastewater with high contents of organic matter and nitrogen. The best operational condition of the reactor was obtained with a hydraulic retention time of 35 h (21 h in the anaerobic zone and 14 h in the aerobic zone) and a recycling ratio (R) of 3.5. In this condition, the COD, total Kjeldahl nitrogen (TKN), and total nitrogen (TN) removal efficiencies were 97%, 96%, and 77%, respectively, with average effluent concentrations of 10 +/- 36 mg COD/L, 2 +/- 1 mg NH(4)(+)-N/L, 8 +/- 3 mg Org-N/L, 1 +/- 1 mg NH(2)(-)-N/L, and 26 +/- 23 mg NH(3)(-)-N/L.
Resumo:
Air concentration measurements performed along the lower nappe of a bottom aerator through the impact and downstream flow regions permitted the calculation of air entrainment along the jet length. The air uptake was also measured in the air supply conduit. It was shown that integration of the concentration profiles along the jet overestimates the air uptake measured in the air supply conduit. Corrective procedures were developed by adapting the concept of entrained and entrapped air, in which the latter is re-circulated in the cavity, but both are measured by air concentration probes.
Resumo:
Highly ordered A-B-A block copolymer arrangements in the submicrometric scale, resulting from dewetting and solvent evaporation of thin films, have inspired a variety of new applications in the nanometric world. Despite the progress observed in the control of such structures, the intricate scientific phenomena related to regular patterns formation are still not completely elucidated. SEBS is a standard example of a triblock copolymer that forms spontaneously impressive pattern arrangements. From macroscopic thin liquid films of SEBS solution, several physical effects and phenomena act synergistically to achieve well-arranged patterns of stripes and/or droplets. That is, concomitant with dewetting, solvent evaporation, and Marangoni effect, Rayleigh instability and phase separation also play important role in the pattern formation. These two last effects are difficult to be followed experimentally in the nanoscale, which render difficulties to the comprehension of the whole phenomenon. In this paper, we use computational methods for image analysis, which provide quantitative morphometric data of the patterns, specifically comprising stripes fragmentation into droplets. With the help of these computational techniques, we developed an explanation for the final part of the pattern formation, i.e. structural dynamics related to the stripes fragmentation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
With the aim of investigating a laser-welded dissimilar joint of TWIP and TRIP steel sheets, the microstructure was characterized by means of OM, SEM, and EBSD to differentiate the fusion zone, heat-affected zone, and the base material. OIM was used to differentiate between ferritic, bainitic, and martensitic structures. Compositions were measured by means of optical emission spectrometry and EDX to evaluate the effect of manganese segregation. Microhardness measurements and tensile tests were performed to evaluate the mechanical properties of the joint. Residual stresses and XRD phase quantification were used to characterize the weld. Grain coarsening and martensitic areas were found in the fusion zone, and they had significant effects on the mechanical properties of the weld. The heat-affected zone of the TRIP steel and the corresponding base material showed considerable differences in the microstructure and properties. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A round robin program zoos conducted to assess the ability of three different X-radiographic systems for imaging internal fatigue cracks in riveted lap joints of composite glass reinforced fiber/metal laminate. From an engineering perspective, conventional film radiography and direct radiography have produced the best results, identifying and characterizing in detail internal damage on metallic faying surfaces of fastened glass reinforced fiber/metal laminate joints. On the other hand, computed radiographic images presented large projected geometric distortions and feature shifts due to the angular incident radiation beam, disclosing only partial internal cracking patterns.
Resumo:
The fatigue crack growth properties of friction stir welded joints of 2024-T3 aluminium alloy have been studied under constant load amplitude (increasing-Delta K), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka`s method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold Delta K values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to K-C instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non-conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non-conservative crack growth rate predictions next to K-C instability. At threshold Delta K values non-conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.
Resumo:
Multifunctional structures are pointed out as an important technology for the design of aircraft with volume, mass, and energy source limitations such as unmanned air vehicles (UAVs) and micro air vehicles (MAVs). In addition to its primary function of bearing aerodynamic loads, the wing/spar structure of an UAV or a MAV with embedded piezoceramics can provide an extra electrical energy source based on the concept of vibration energy harvesting to power small and wireless electronic components. Aeroelastic vibrations of a lifting surface can be converted into electricity using piezoelectric transduction. In this paper, frequency-domain piezoaeroelastic modeling and analysis of a canti-levered platelike wing with embedded piezoceramics is presented for energy harvesting. The electromechanical finite-element plate model is based on the thin-plate (Kirchhoff) assumptions while the unsteady aerodynamic model uses the doublet-lattice method. The electromechanical and aerodynamic models are combined to obtain the piezoaeroelastic equations, which are solved using a p-k scheme that accounts for the electromechanical coupling. The evolution of the aerodynamic damping and the frequency of each mode are obtained with changing airflow speed for a given electrical circuit. Expressions for piezoaeroelastically coupled frequency response functions (voltage, current, and electrical power as well the vibratory motion) are also defined by combining flow excitation with harmonic base excitation. Hence, piezoaeroelastic evolution can be investigated in frequency domain for different airflow speeds and electrical boundary conditions. [DOI:10.1115/1.4002785]
Resumo:
Vibration-based energy harvesting has been investigated by several researchers over the last decade. The goal in this research field is to power small electronic components by converting the waste vibration energy available in their environment into electrical energy. Recent literature shows that piezoelectric transduction has received the most attention for vibration-to-electricity conversion. In practice, cantilevered beams and plates with piezoceramic layers are employed as piezoelectric energy harvesters. The existing piezoelectric energy harvester models are beam-type lumped parameter, approximate distributed parameter and analytical distributed parameter solutions. However, aspect ratios of piezoelectric energy harvesters in several cases are plate-like and predicting the power output to general (symmetric and asymmetric) excitations requires a plate-type formulation which has not been covered in the energy harvesting literature. In this paper. an electromechanically coupled finite element (FE) plate model is presented for predicting the electrical power output of piezoelectric energy harvester plates. Generalized Hamilton`s principle for electroelastic bodies is reviewed and the FE model is derived based on the Kirchhoff plate assumptions as typical piezoelectric energy harvesters are thin structures. Presence of conductive electrodes is taken into account in the FE model. The predictions of the FE model are verified against the analytical solution for a unimorph cantilever and then against the experimental and analytical results of a bimorph cantilever with a tip mass reported in the literature. Finally, an optimization problem is solved where the aluminum wing spar of an unmanned air vehicle (UAV) is modified to obtain a generator spar by embedding piezoceramics for the maximum electrical power without exceeding a prescribed mass addition limit. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The present research studies the behavior of reinforced concrete locking beams supported by two capped piles with the socket embedded; used as connections for pre-cast concrete structures. The effect provoked by locking the beam on the pile-caps when supported by the lateral socket walls was evaluated. Three-dimensional numerical analyses using software based on the finite element method (FEM) were developed considering the nonlinear physical behavior of the material. To evaluate the adopted software, a comparative analysis was made using the numerical and experimented results obtained from other software. In the pile caps studied, a variation in the wall thickness, socket interface, strut angle inclination and action on beam. The results show that the presence of a beam does not significantly change pile cap behavior and that the socket wall is able to effectively transfer the force from the beam to the pile caps. By the tensions on the bars of longitudinal reinforcement, it was possible to obtain the force on the tie and the strut angle inclination before the collapse of models. It was found that the angles present more inclinations than those used in the design, which was made based on a strut-and-tie model. More results are available at http://www.set.eesc.usp.br/pdf/download/2009ME_RodrigoBarros.pdf
Resumo:
This study evaluated two different support materials (polystyrene and expanded clay) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBRs contained either polystyrene (R1) or expanded clay (R2) as support materials were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 degrees C and a pH of approximately 5.5. The AFBRs were operated with a range of hydraulic retention times (HRTs) between 1 and 8 h. For R1 with an HRT of 2 h, the maximum hydrogen yield (HY) was 1.90 mol H(2) mol(-1) glucose, with 0.805 mg of biomass (as total volatile solids, or TVS) attached to each g of polystyrene. For R2 operated at an HRT of 2 h, the maximum HY was 2.59 mol H(2) moll glucose, with 1.100 mg of attached biomass (as TVS) g(-1) expanded clay. The highest hydrogen production rates (HPR) were 0.95 and 1.21 L h(-1) L(-1) for R1 and R2, respectively, using an HRT of 1 h. The H(2) content increased from 16-47% for R1 and from 22-51% for R2. No methane was detected in the biogas produced throughout the period of AFBR operation. These results show that the values of HY, HPR, H(2) content, and g of attached biomass g(-1) support material were all higher for AFBRs containing expanded clay than for reactors containing polystyrene. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Resumo:
Aquatic humic substances (AHS) isolated from two characteristic seasons of the Negro river, winter and summer corresponding to floody and dry periods, were structurally characterized by (13)C nuclear magnetic ressonance. Subsequently, AHS aqueous solutions were irradiated with a polychromatic lamp (290-475 nm) and monitored by its total organic carbon (TOC) content, ultraviolet-visible (UV-vis) absorbance, fluorescence and Fourier transformed infrared spectroscopy (FTIR). As a result, a photobleaching upto 80% after irradiation of 48 h was observed. Conformational rearrangements and formation of low molecular complexity structures were formed during the irradiation, as deduced from the pH decrement and the fluorescence shifting to lower wavelengths. Additionally a significant mineralization with the formation Of CO(2), CO, and inorganic carbon compounds was registered, as assumed by TOC losses of up to 70%. The differences in photodegradation between samples expressed by photobleaching efficiency were enhanced in the summer sample and related to its elevated aromatic content. Aromatic structures are assumed to have high autosensitization capacity effects mediated by the free radical generation from quinone and phenolic moieties.
Resumo:
Swallowing dynamics involves the coordination and interaction of several muscles and nerves which allow correct food transport from mouth to stomach without laryngotracheal penetration or aspiration. Clinical swallowing assessment depends on the evaluator`s knowledge of anatomic structures and of neurophysiological processes involved in swallowing. Any alteration in those steps is denominated oropharyngeal dysphagia, which may have many causes, such as neurological or mechanical disorders. Videofluoroscopy of swallowing is presently considered to be the best exam to objectively assess the dynamics of swallowing, but the exam needs to be conducted under certain restrictions, due to patient`s exposure to radiation, which limits periodical repetition for monitoring swallowing therapy. Another method, called cervical auscultation, is a promising new diagnostic tool for the assessment of swallowing disorders. The potential to diagnose dysphagia in a noninvasive manner by assessing the sounds of swallowing is a highly attractive option for the dysphagia clinician. Even so, the captured sound has an amount of noise, which can hamper the evaluator`s decision. In that way, the present paper proposes the use of a filter to improve the quality of audible sound and facilitate the perception of examination. The wavelet denoising approach is used to decompose the noisy signal. The signal to noise ratio was evaluated to demonstrate the quantitative results of the proposed methodology. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Chloride migration tests are used to measure the concrete capacity to inhibit chloride attack. Many researchers carry out this test in a slice of concrete extracted from the central part of cylindrical specimens, discarding about 75% of the concrete used to mold the specimens. This fact generated the question: would it be possible to extract more slices from a same specimen without losing the confidence in the results? The main purpose of this work is to answer this question. Moreover, another aim of this study was to show the difference of chloride penetration between finished faces and the formwork surfaces of concrete beams and slabs. The results indicated that it is possible to use more slices of a single specimen for a chloride migration test. Moreover, it was demonstrated that there is a significant difference of chloride penetration between the finished surface and the formwork surface of the specimens. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Hydrophobic agents are surface protection materials capable of increasing the angle of contact between the water and the concrete surface. For this reason, hydrophobic agents reduce water (in liquid form) penetration in concrete. Therefore, many European construction regulating agencies recommend this treatment in their maintenance policy. Nonetheless, there continues to be a gap in the understanding about which transport mechanisms of the concrete are modified by the hidrophobic agents. The aim of this study was to fill this gap in regards to reinforced concrete structures inserted in a marine environment. To this end, certain tests were used: Two involving permeability mechanism, one determining capillary absorption, and the last, a migration test used to estimate the chloride diffusion coefficient in saturated condition. Results indicated the efficacy of the hydrophobic agents in cases where capillary suction is the mechanism of water penetration (reduced by 2.12 and 7.0 times, depending of the product). However, when the transport mechanism is permeability this product is not advisable. Moreover, it was demonstrated that the chloride diffusion coefficient (in saturated condition) is reduced by the hydrophobic agents, however, the magnitude of this reduction is minor (reduced by 11% and 17%, depending on the product).