101 resultados para Diastolic Dysfunction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we investigated the oxidative stress influence in some prosurvival and proapoptotic proteins after myocardial infarction (MI). Male Wistar rats were divided in two groups: Sham-operated (control) and MI. MI was induced by left coronary artery occlusion. 28-days after surgery, echocardiographic, morphometric, and hemodynamic parameters were evaluated. Redox status (reduced to oxidized glutathione ratio, GSH/GSSG) and hydrogen peroxide levels (H(2)O(2)) were measured in heart tissue. The p-ERK/ERK, p-Akt/Akt, p-mTOR/mTOR and p-GSK-3 beta/GSK-3 beta ratios, as well as apoptosis-inducing factor (AIF) myocardial protein expression were quantified by Western blot. MI group showed an increase in cardiac hypertrophy (23%) associated with a decrease in ejection fraction (38%) and increase in left ventricular end-diastolic pressure (82%) when compared to control, characterizing ventricular dysfunction. Redox status imbalance was seen in MI animals, as evidenced by the decrease in the GSH/GSSG ratio (30%) and increased levels of H(2)O(2) (45%). This group also showed an increase in the ERK phosphorylation and a reduction of Akt and mTOR phosphorylation when compared to control. Moreover, we showed a reduction in the GSK-3 beta phosphorylation and an increase in AIF protein expression in MI group. Taken together, our results show increased H(2)O(2) levels and cellular redox imbalance associated to a higher p-ERK and AIF immunocontent, which would contribute to a maladaptive hypertrophy phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular disease is less frequent in premenopausal women than in age-matched men or postmenopausal women. Moreover, the marked age-related decline in serum dehydroepiandrosterone (DHEA) level has been associated to cardiovascular disease. The aim of this study was to evaluate the effects of DHEA treatment on vascular function in ovariectomized rats. At 8 weeks of age, female Wistar rats were ovariectomized (OVX) or sham (SHAM) operated and 8 weeks after surgery both groups were treated with vehicle or DHEA (10 mg kg-1 week-1) for 3 weeks. Aortic rings were used to evaluate the vasoconstrictor response to phenylephrine (PHE) and the relaxation responses to acetylcholine (ACh) and sodium nitroprusside (SNP). Tissue reactive oxygen species (ROS) production and SOD, NADPH oxidase and eNOS protein expression were analysed. PHE-induced contraction was increased in aortic rings from OVX compared to SHAM, associated with a reduction in NO bioavailability. Furthermore, the relaxation induced by ACh was reduced in arteries from OVX, while SNP relaxation did not change. The incubation of aortic rings with SOD or apocynin restored the enhanced PHE-contraction and the impaired ACh-relaxation only in OVX. DHEA treatment corrected the increased PHE contraction and the impaired ACh-induced relaxation observed in OVX by an increment in NO bioavailability and decrease in ROS production. Besides, DHEA treatment restores the reduced Cu/Zn-SOD protein expression and eNOS phosphorylation and the increased NADPH oxidase protein expression in the aorta of OVX rats. The present results suggest an important action of DHEA, improving endothelial function in OVX rats by acting as an antioxidant and enhancing the NO bioavailability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: The present study was designed to assess whether cyclooxygenase-2 (COX-2) activation is involved in the effects of chronic aldosterone treatment on endothelial function of mesenteric resistance arteries (MRA) from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Experimental approach: Relaxation to acetylcholine was measured in MRA from both untreated and aldosterone-treated strains. Vasomotor responses to prostacyclin and U46619 were also analysed. Release of 6-oxo-prostaglandin (PG)F(1 alpha) and thromboxane B(2) (TxB(2)) was determined by enzyme immunoassay. COX-2 protein expression was measured by western blot. Key results: Aldosterone reduced acetylcholine relaxation in MRA from both strains. In MRA from both aldosterone-treated strains the COX-1/2 or COX-2 inhibitor (indomethacin and NS-398, respectively), Tx2 synthesis inhibitor (furegrelate), prostacyclin synthesis inhibitor (tranylcypromine) or Tx2/PG2 receptor antagonist (SQ 29 548), but not COX-1 inhibitor SC-560, increased acetylcholine relaxation. In untreated rats this response was increased only in SHR. Prostacyclin elicited a biphasic vasomotor response: lower concentrations elicited relaxation, whereas higher concentrations elicited contraction that was reduced by SQ 29 548. Aldosterone increased the acetylcholine-stimulated production of 6-oxo-PGF(1 alpha) and TxB(2) in MRA from both strains. COX-2 expression was higher in both strains of rats treated with aldosterone. Conclusions and implications: Chronic treatment with aldosterone impaired endothelial function in MRA under normotensive and hypertensive conditions by increasing COX-2-derived prostacyclin and thromboxane A(2). As endothelial dysfunction participates in the pathogenesis of many cardiovascular disorders we hypothesize that anti-inflammatory drugs, specifically COX-2 inhibitors, could ameliorate vascular damage in patients with elevated aldosterone production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as obesity and type 2 diabetes mellitus. These high levels of plasma FFA are proposed to play an important role for the development of insulin resistance but the mechanisms involved are still unclear. This study investigated the effects of saturated and unsaturated FFA on insulin sensitivity in parallel with mitochondrial function. C2C12 myotubes were treated for 24 h with 0.1 mM of saturated (palmitic and stearic) and unsaturated (oleic, linoleic, eicosapentaenoic, and docosahexaenoic) FFA. After this period, basal and insulin-stimulated glucose metabolism and mitochondrial function were evaluated. Saturated palmitic and stearic acids decreased insulin-induced glycogen synthesis, glucose oxidation, and lactate production. Basal glucose oxidation was also reduced. Palmitic and stearic acids impaired mitochondrial function as demonstrated by decrease of both mitochondrial hyperpolarization and ATP generation. These FFA also decreased Akt activation by insulin. As opposed to saturated FFA, unsaturated FFA did not impair glucose metabolism and mitochondrial function. Primary cultures of rat skeletal muscle cells exhibited similar responses to saturated FFA as compared to C2C12 cells. These results show that in muscle cells saturated FFA-induced mitochondrial dysfunction associated with impaired insulin-induced glucose metabolism. J. Cell. Physiol. 222: 187-194, 2010. (C) 2009 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES To test the hypothesis that glyco protein 91phox (gp91(phox)) subunit of nicotinamide adenine dinucleotide phosphate [NAD(P) H] oxidase is a fundamental target for physical activity to ameliorate erectile dysfunction (ED). Vascular risk factors are reported to contribute to ED. Regular physical exercise prevents cardiovascular diseases by increasing nitric oxide (NO) production and/or decreasing NO inactivation. METHODS Male Wistar rats received the NO synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) for 4 weeks, after which animals were submitted to a run training program for another 4 weeks. Erectile functions were evaluated by in vitro cavernosal relaxations and intracavernous pressure measurements. Expressions of gp91(phox) subunit and neuronal nitric oxidase synthase in erectile tissue, as well as superoxide dismutase activity and nitrite/nitrate (NO(x)) levels were determined. RESULTS The in vitro acetylcholine-and electrical field stimulation-induced cavernosal relaxations, as well as the increases in intracavernous pressure were markedly reduced in sedentary rats treated with L-NAME. Run training significantly restored the impaired cavernosal relaxations. No alterations in the neuronal nitric oxidase synthase protein expression (and its variant penile neuronal nitric oxidase synthase) were detected. A reduction of NO(x) levels and superoxide dismutase activity was observed in L-NAME-treated animals, which was significantly reversed by physical training. Gene expression of subunit gp91(phox) was enhanced by approximately 2-fold in erectile tissue of L-NAME-treated rats, and that was restored to basal levels by run training. CONCLUSIONS Our study shows that ED seen after long-term L-NAME treatment is associated with gp91(phox) subunit upregulation and decreased NO bioavailability. Exercise training reverses the increased oxidative stress in NO-deficient rats, ameliorating the ED. UROLOGY 75: 961-967, 2010. (C) 2009 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the allergic reaction in neonatal streptozotocin (nSTZ)-induced diabetes mellitus. Male newborn Wistar rats were made diabetic by the injection of streptozotocin (160 mg/kg, i. p.) and used 8 weeks thereafter. Animals were sensitized against ovalbumin (OA, 50 mu g and Al(OH)3, 5 mg, s. c.) and challenged 14 or 21 days thereafter. OA-induced airway inflammation and OA-induced pleurisy models were used to investigate leukocyte migration (total and differential leukocyte counts) and lung vascular permeability (Evans blue dye extravasation). nSTZ-diabetic rats presented glucose intolerance and insulin resistance. Relative to controls, nSTZ rats exhibited a 30% to 50% reduction in lung vascular permeability. Leukocyte infiltration in both models of allergen-induced inflammation, and number of pleural mast cells did not differ between groups. Data suggest that the reduction of allergic inflammatory reactions in nSTZ rats is restricted to microvascular dysfunctions and associated, probably, with insulin resistance in lung microvascular endothelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. The objective of this study was to show the morphologic characteristics of allograft renal biopsies in renal transplant patients with stable renal function, which can potentially be early markers of allograft dysfunction, after 5 years of follow-up. Methods. Forty-nine renal transplant patients with stable renal function were submitted to renal biopsies and simultaneous measurement of serum creatinine (Cr). Histology was evaluated using Banff scores, determination of interstitial fibrosis by Sirius red staining and immunohistochemical study of proximal tubule and interstitial compartment (using cytokeratin, vimentin, and myofibroblasts as markers). Biopsies were evaluated according to the presence or absence of the epitheliomesenchymal transition (EMT). The interstitial presence of myofibroblasts and tubular presence of vimentin was also analyzed simultaneously. Renal function was measured over the follow-up period to estimate the reduction of graft function. Results. Median posttransplant time at enrollment was 105 days. Patients were followed for 64.3 +/- 8.5 months. The mean Cr at biopsy time was 1.44 +/- 0.33 mg/dL, and after the follow-up it was 1.29 +/- 0.27 mg/dL. Nine patients (19%) had a reduction of their graft function. Eleven biopsies (22%) had tubulointerstitial alterations according to Banff score. Seventeen biopsies (34%) presented EMT. Fifteen biopsies (32%) had high interstitial expression of myofibroblasts and tubular vimentin. Using Cox multivariate analysis, HLA and high expression of interstitial myofibroblasts and tubular vimentin were associated with reduction of graft function, yielding a risk of 3.3 (P = .033) and 9.8 (P = .015), respectively. Conclusion. Fibrogenesis mechanisms occur very early after transplantation and are risk factors for long-term renal function deterioration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disturbances in the regulation of cytosolic calcium (Ca(2+)) concentration play a key role in the vascular dysfunction associated with arterial hypertension. Stromal interaction molecules (STIMs) and Orai proteins represent a novel mechanism to control store-operated Ca(2+) entry. Although STIMs act as Ca(2+) sensors for the intracellular Ca(2+) stores, Orai is the putative pore-forming component of Ca(2+) release-activated Ca(2+) channels at the plasma membrane. We hypothesized that augmented activation of Ca(2+) release-activated Ca(2+)/Orai-1, through enhanced activity of STIM-1, plays a role in increased basal tonus and vascular reactivity in hypertensive animals. Endothelium-denuded aortic rings from Wistar-Kyoto and stroke-prone spontaneously hypertensive rats were used to evaluate contractions because of Ca(2+) influx. Depletion of intracellular Ca(2+) stores, which induces Ca(2+) release-activated Ca(2+) activation, was performed by placing arteries in Ca(2+) free-EGTA buffer. The addition of the Ca(2+) regular buffer produced greater contractions in aortas from stroke-prone spontaneously hypertensive rats versus Wistar-Kyoto rats. Thapsigargin (10 mu mol/L), an inhibitor of the sarcoplasmic reticulum Ca(2+) ATPase, further increased these contractions, especially in stroke-prone spontaneously hypertensive rat aorta. Addition of the Ca(2+) release-activated Ca(2+) channel inhibitors 2-aminoethoxydiphenyl borate (100 mu mol/L) or gadolinium (100 mu mol/L), as well as neutralizing antibodies to STIM-1 or Orai-1, abolished thapsigargin-increased contraction and the differences in spontaneous tone between the groups. Expression of Orai-1 and STIM-1 proteins was increased in aorta from stroke-prone spontaneously hypertensive rats when compared with Wistar-Kyoto rats. These results support the hypothesis that both Orai-1 and STIM-1 contribute to abnormal vascular function in hypertension. Augmented activation of STIM-1/Orai-1 may represent the mechanism that leads to impaired control of intracellular Ca(2+) levels in hypertension. (Hypertension. 2009; 53[part 2]: 409-416.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polymorphisms of endothelial nitric oxide synthase (eNOS) are associated with reduced eNOS activity. Aerobic exercise training (AEX) may influence resting nitric oxide (NO) production, oxidative stress and blood pressure. The purpose of this study was to investigate the effect of AEX on the relationship among blood pressure, eNOS gene polymorphism and oxidative stress in pre-hypertensive older people. 118 pre-hypertensive subjects (59 +/- A 6 years) had blood samples collected after a 12 h overnight fast for assessing plasma NO metabolites (NOx) assays, thiobarbituric acid reactive substances (T-BARS) and superoxide dismutase activity (ecSOD). eNOS polymorphism (T-786C and G-894T) was done by standard PCR methods. All people were divided according to the genotype results (G1: TT/GG, G2: TT/GT + TT, G3: TC + CC/GG, G4: TC + CC/GT + TT). All parameters were measured before and after 6 months of AEX (70% of VO(2 max)). At baseline, no difference was found in systolic and diastolic blood pressure, ecSOD and T-BARS activity. Plasma NOx levels were significantly different between G1 (19 +/- A 1 mu M) and G4 (14.2 +/- A 0.6 mu M) and between G2 (20.1 +/- A 1.7 mu M) and G4 (14.2 +/- A 0.6 mu M). Therefore, reduced NOx concentration in G4 group occurred only when the polymorphisms were associated, suggesting that these results are more related to genetic factors than NO-scavenging effect. After AEX, the G4 increased NOx values (17.2 +/- A 1.2 mu M) and decreased blood pressure. G1, G3 and G4 decreased T-BARS levels. These results suggest the AEX can modulate the NOx concentration, eNOS activity and the relationship among eNOS gene polymorphism, oxidative stress and blood pressure especially in C (T-786C) and T (G-894T) allele carriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipid peroxidation produces a large number of reactive aldehydes as secondary products. We have previously shown that the reaction of cytochrome c with trans,trans-2, 4-decadienal (DDE), an aldehyde generated as a product of lipid peroxidation in cell membranes, results in the formation of adducts. Mass spectrometry analysis indicated that His-33, Lys-39, Lys-72 and Lys-100 in cytochrome c were modified by DDE. In the present work, we investigated the effect of DDE on isolated rat liver mitochondria. DDE (162 mu M) treatment increases the rate of mitochondrial oxygen consumption. Extensive mitochondrial swelling upon treatment with DDE (900 nM-162 mu M) was observed by light scattering and transmission electron microscopy experiments. DDE-induced loss of inner mitochondrial membrane potentials, monitored by safranin O fluorescence, was also observed. Furthermore, DDE-treated mitochondria showed an increase in lipid peroxidation, as monitored by MDA formation. These results suggest that reactive aldehydes promote mitochondrial dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: In the present work we investigated the in vitro effect of cis-4-decenoic acid, the pathognomonic metabolite of medium-chain acyl-CoA dehydrogenase deficiency, on various parameters of bioenergetic homeostasis in rat brain mitochondria. Main methods: Respiratory parameters determined by oxygen consumption were evaluated, as well as membrane potential, NAD(P)H content, swelling and cytochrome c release in mitochondrial preparations from rat brain, using glutamate plus malate or succinate as substrates. The activities of citric acid cycle enzymes were also assessed. Key findings: cis-4-decenoic acid markedly increased state 4 respiration, whereas state 3 respiration and the respiratory control ratio were decreased. The ADP/O ratio, the mitochondrial membrane potential, the matrix NAD(P)H levels and aconitase activity were also diminished by cis-4-decenoic acid. These data indicate that this fatty acid acts as an uncoupler of oxidative phosphorylation and as a metabolic inhibitor. cis-4-decenoic acid also provoked a marked mitochondrial swelling when either KCl or sucrose was used in the incubation medium and also induced cytochrome c release from mitochondria, suggesting a non-selective permeabilization of the inner mitochondria! membrane. Significance: It is therefore presumed that impairment of mitochondrial homeostasis provoked by cis-4-decenoic acid may be involved in the brain dysfunction observed in medium-chain acyl-CoA dehydrogenase deficient patients. (C) 2010 Elsevier Inc. All rights reserved.