127 resultados para Constrained nonlinear optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures-FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cost of a new ship design heavily depends on the principal dimensions of the ship; however, dimensions minimization often conflicts with the minimum oil outflow (in the event of an accidental spill). This study demonstrates one rational methodology for selecting the optimal dimensions and coefficients of form of tankers via the use of a genetic algorithm. Therein, a multi-objective optimization problem was formulated by using two objective attributes in the evaluation of each design, specifically, total cost and mean oil outflow. In addition, a procedure that can be used to balance the designs in terms of weight and useful space is proposed. A genetic algorithm was implemented to search for optimal design parameters and to identify the nondominated Pareto frontier. At the end of this study, three real ships are used as case studies. [DOI:10.1115/1.4002740]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous papers related to the optimization of pressure vessels have considered the optimization of the nozzle independently from the dished end. This approach generates problems such as thickness variation from nozzle to dished end (coupling cylindrical region) and, as a consequence, it reduces the optimality of the final result which may also be influenced by the boundary conditions. Thus, this work discusses shape optimization of axisymmetric pressure vessels considering an integrated approach in which the entire pressure vessel model is used in conjunction with a multi-objective function that aims to minimize the von-Mises mechanical stress from nozzle to head. Representative examples are examined and solutions obtained for the entire vessel considering temperature and pressure loading. It is noteworthy that different shapes from the usual ones are obtained. Even though such different shapes may not be profitable considering present manufacturing processes, they may be competitive for future manufacturing technologies, and contribute to a better understanding of the actual influence of shape in the behavior of pressure vessels. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-liquid phase equilibrium modeling of triacylglycerol mixtures is essential for lipids design. Considering the alpha polymorphism and liquid phase as ideal, the Margules 2-suffix excess Gibbs energy model with predictive binary parameter correlations describes the non ideal beta and beta` solid polymorphs. Solving by direct optimization of the Gibbs free energy enables one to predict from a bulk mixture composition the phases composition at a given temperature and thus the SFC curve, the melting profile and the Differential Scanning Calorimetry (DSC) curve that are related to end-user lipid properties. Phase diagram, SFC and DSC curve experimental data are qualitatively and quantitatively well predicted for the binary mixture 1,3-dipalmitoyl-2-oleoyl-sn-glycerol (POP) and 1,2,3-tripalmitoyl-sn-glycerol (PPP), the ternary mixture 1,3-dimyristoyl-2-palmitoyl-sn-glycerol (MPM), 1,2-distearoyl-3-oleoyl-sn-glycerol (SSO) and 1,2,3-trioleoyl-sn-glycerol (OOO), for palm oil and cocoa butter. Then, addition to palm oil of Medium-Long-Medium type structured lipids is evaluated, using caprylic acid as medium chain and long chain fatty acids (EPA-eicosapentaenoic acid, DHA-docosahexaenoic acid, gamma-linolenic-octadecatrienoic acid and AA-arachidonic acid), as sn-2 substitutes. EPA, DHA and AA increase the melting range on both the fusion and crystallization side. gamma-linolenic shifts the melting range upwards. This predictive tool is useful for the pre-screening of lipids matching desired properties set a priori.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies a simplified methodology to integrate the real time optimization (RTO) of a continuous system into the model predictive controller in the one layer strategy. The gradient of the economic objective function is included in the cost function of the controller. Optimal conditions of the process at steady state are searched through the use of a rigorous non-linear process model, while the trajectory to be followed is predicted with the use of a linear dynamic model, obtained through a plant step test. The main advantage of the proposed strategy is that the resulting control/optimization problem can still be solved with a quadratic programming routine at each sampling step. Simulation results show that the approach proposed may be comparable to the strategy that solves the full economic optimization problem inside the MPC controller where the resulting control problem becomes a non-linear programming problem with a much higher computer load. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the problem of tracking target sets using a model predictive control (MPC) law. Some MPC applications require a control strategy in which some system outputs are controlled within specified ranges or zones (zone control), while some other variables - possibly including input variables - are steered to fixed target or set-point. In real applications, this problem is often overcome by including and excluding an appropriate penalization for the output errors in the control cost function. In this way, throughout the continuous operation of the process, the control system keeps switching from one controller to another, and even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. From a theoretical point of view, the control objective of this kind of problem can be seen as a target set (in the output space) instead of a target point, since inside the zones there are no preferences between one point or another. In this work, a stable MPC formulation for constrained linear systems, with several practical properties is developed for this scenario. The concept of distance from a point to a set is exploited to propose an additional cost term, which ensures both, recursive feasibility and local optimality. The performance of the proposed strategy is illustrated by simulation of an ill-conditioned distillation column. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper concern the development of a stable model predictive controller (MPC) to be integrated with real time optimization (RTO) in the control structure of a process system with stable and integrating outputs. The real time process optimizer produces Optimal targets for the system inputs and for Outputs that Should be dynamically implemented by the MPC controller. This paper is based oil a previous work (Comput. Chem. Eng. 2005, 29, 1089) where a nominally stable MPC was proposed for systems with the conventional control approach where only the outputs have set points. This work is also based oil the work of Gonzalez et at. (J. Process Control 2009, 19, 110) where the zone control of stable systems is studied. The new control for is obtained by defining ail extended control objective that includes input targets and zone controller the outputs. Additional decision variables are also defined to increase the set of feasible solutions to the control problem. The hard constraints resulting from the cancellation of the integrating modes Lit the end of the control horizon are softened,, and the resulting control problem is made feasible to a large class of unknown disturbances and changes of the optimizing targets. The methods are illustrated with the simulated application of the proposed,approaches to a distillation column of the oil refining industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal performance of a cooling tower and its cooling water system is critical for industrial plants, and small deviations from the design conditions may cause severe instability in the operation and economics of the process. External disturbances such as variation in the thermal demand of the process or oscillations in atmospheric conditions may be suppressed in multiple ways. Nevertheless, such alternatives are hardly ever implemented in the industrial operation due to the poor coordination between the utility and process sectors. The complexity of the operation increases because of the strong interaction among the process variables. In the present work, an integrated model for the minimization of the operating costs of a cooling water system is developed. The system is composed of a cooling tower as well as a network of heat exchangers. After the model is verified, several cases are studied with the objective of determining the optimal operation. It is observed that the most important operational resources to mitigate disturbances in the thermal demand of the process are, in this order: the increase in recycle water flow rate, the increase in air flow rate and finally the forced removal of a portion of the water flow rate that enters the cooling tower with the corresponding make-up flow rate. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an alternative way to formulate the stable Model Predictive Control (MPC) optimization problem that allows the enlargement of the domain of attraction, while preserving the controller performance. Based on the dual MPC that uses the null local controller, it proposed the inclusion of an appropriate set of slacked terminal constraints into the control problem. As a result, the domain of attraction is unlimited for the stable modes of the system, and the largest possible for the non-stable modes. Although this controller does not achieve local optimality, simulations show that the input and output performances may be comparable to the ones obtained with the dual MPC that uses the LQR as a local controller. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern Integrated Circuit (IC) design is characterized by a strong trend of Intellectual Property (IP) core integration into complex system-on-chip (SOC) architectures. These cores require thorough verification of their functionality to avoid erroneous behavior in the final device. Formal verification methods are capable of detecting any design bug. However, due to state explosion, their use remains limited to small circuits. Alternatively, simulation-based verification can explore hardware descriptions of any size, although the corresponding stimulus generation, as well as functional coverage definition, must be carefully planned to guarantee its efficacy. In general, static input space optimization methodologies have shown better efficiency and results than, for instance, Coverage Directed Verification (CDV) techniques, although they act on different facets of the monitored system and are not exclusive. This work presents a constrained-random simulation-based functional verification methodology where, on the basis of the Parameter Domains (PD) formalism, irrelevant and invalid test case scenarios are removed from the input space. To this purpose, a tool to automatically generate PD-based stimuli sources was developed. Additionally, we have developed a second tool to generate functional coverage models that fit exactly to the PD-based input space. Both the input stimuli and coverage model enhancements, resulted in a notable testbench efficiency increase, if compared to testbenches with traditional stimulation and coverage scenarios: 22% simulation time reduction when generating stimuli with our PD-based stimuli sources (still with a conventional coverage model), and 56% simulation time reduction when combining our stimuli sources with their corresponding, automatically generated, coverage models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The TCP/IP architecture was consolidated as a standard to the distributed systems. However, there are several researches and discussions about alternatives to the evolution of this architecture and, in this study area, this work presents the Title Model to contribute with the application needs support by the cross layer ontology use and the horizontal addressing, in a next generation Internet. For a practical viewpoint, is showed the network cost reduction for the distributed programming example, in networks with layer 2 connectivity. To prove the title model enhancement, it is presented the network analysis performed for the message passing interface, sending a vector of integers and returning its sum. By this analysis, it is confirmed that the current proposal allows, in this environment, a reduction of 15,23% over the total network traffic, in bytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among several process variability sources, valve friction and inadequate controller tuning are supposed to be two of the most prevalent. Friction quantification methods can be applied to the development of model-based compensators or to diagnose valves that need repair, whereas accurate process models can be used in controller retuning. This paper extends existing methods that jointly estimate the friction and process parameters, so that a nonlinear structure is adopted to represent the process model. The developed estimation algorithm is tested with three different data sources: a simulated first order plus dead time process, a hybrid setup (composed of a real valve and a simulated pH neutralization process) and from three industrial datasets corresponding to real control loops. The results demonstrate that the friction is accurately quantified, as well as ""good"" process models are estimated in several situations. Furthermore, when a nonlinear process model is considered, the proposed extension presents significant advantages: (i) greater accuracy for friction quantification and (ii) reasonable estimates of the nonlinear steady-state characteristics of the process. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers two aspects of the nonlinear H(infinity) control problem: the use of weighting functions for performance and robustness improvement, as in the linear case, and the development of a successive Galerkin approximation method for the solution of the Hamilton-Jacobi-Isaacs equation that arises in the output-feedback case. Design of nonlinear H(infinity) controllers obtained by the well-established Taylor approximation and by the proposed Galerkin approximation method applied to a magnetic levitation system are presented for comparison purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the formulation of the nonlinear theory of H(infinity) control has been well developed, solving the Hamilton-Jacobi-Isaacs equation remains a challenge and is the major bottleneck for practical application of the theory. Several numerical methods have been proposed for its solution. In this paper, results on convergence and stability for a successive Galerkin approximation approach for nonlinear H(infinity) control via output feedback are presented. An example is presented illustrating the application of the algorithm.