148 resultados para Ceramic burning


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, several research groups and industries are studying applications for the residues from agrobusiness, other than burning them. Thinking about a better use for the sugarcane bagasse, this study aims to obtain membranes of cellulose acetate composite with oxidized lignin, both isolated from sugarcane bagasse. Thus, we obtain a product with higher commercial value, from a natural fiber, which has applications in water and effluent treatment, and further contributes to the maintenance of the environment. Macromolecular components of bagasse were separated by steam explosion pre-treatment and a basic treatment with NaOH. The pulp obtained was bleached and acetylated, and subsequently membranes of this cellulose acetate were synthesized, incorporating oxidized lignin to these membranes in order to increase the metal retention capacity of them. The acetylated material was analyzed by IR, confirming acetylation. Degree of substitution was determined by volumetry, resulting in a diacetate to the MA I condition and a triacetate to MA II condition. It was observed that for the material with a lower degree of acetylation, it has better incorporation of oxidized lignins. SEM, showed membranes with dense structure. Tests were conducted to evaluate metal retention, and the average capacity of removal was 16% Cu(+2) in steady-state experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of Al(2)O(3) addition and sintering parameters on the mechanical properties and cytotoxicity of tetragonal ZrO(2)-3 mol% Y(2)O(3) ceramics was evaluated. Samples containing 0, 10, 20 and 30 wt.% of Al(2)O(3) particles were prepared by cold uniaxial pressing (80 MPa) and sintered in air at 1500, 1550 and 1600 degrees C for 120 min. The effects of the sintering conditions on the microstructure were analyzed by X-ray diffraction analysis and scanning electron microscopy. Hardness and fracture toughness were determined by the Vickers indentation method and the mechanical resistance by four-point bending tests. As a preliminary biological evaluation, ""in vitro"" cytotoxicity tests were realized to determine the cytotoxic level of the ZrO(2)-Al(2)O(3) composites, using the neutral red uptake method with NCTC clones L929 from the American Type Culture Collection (ATCC) bank. Fully dense ceramic materials were obtained with a hardness ranging between 1340 HV and 1585 HV, depending on the amount of Al(2)O(3) in the ZrO(2) matrix. On the other hand, no significant influence of the Al(2)O(3) addition on fracture toughness was observed, exhibiting values near 8 MPa m(1/2) for all compositions and sintering conditions studied. The non-cytotoxic behavior, the elevated fracture toughness, the good bending strength (sigma(f) = 690 MPa) and the elevated Weibull`s modulus (m = 11) exhibited by the material, show that these ceramic composites are highly suitable biomaterials for dental implant applications. (C) 2008 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The wetting of Ti-Cu alloys on Si3N4 was analyzed by the sessile drop method, using an imaging system with a CCD camera during the heating under argon flow. The contact angle was measured as a function of temperature and time. The samples were cut transversally and characterized by scanning electron microscopy and energy dispersive spectrometry (SEM/EDS). Wettability of the Ti-Cu alloy on Si3N4 is influenced by the reaction between the Ti and the ceramic. The TC1 and TC2 alloys presented low final contact angle values around 2 degrees and 26 degrees, respectively, indicating good wetting on Si3N4. (c) 2006 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a different roof tiles influence study on the thermal comfort for broiler housings. The research was conducted at UNESP`s Experimental Campus at Dracena, state of Sao Paulo, Brazil. Four prototypes in real scale were built, each with an area of 28 m(2). The prototype was covered with roof tiles made of recycled long-life packing material, ceramic tiles, ceramic tiles painted with white coating, and fiber/cement tiles. Temperatures inside the structures were recorded in the winter 2007 over a 90-day period. The results obtained indicated that recycled tile thermal behavior was similar to ceramic tiles. However for the winter period all the prototypes had presented comfort thermal index not in the broilers thermo neutral zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An assessment is made of the atmospheric emissions from the life cycle of fuel ethanol coupled with the cogeneration of electricity from sugarcane in Brazil. The total exergy loss from the most quantitative relevant atmospheric emission substances produced by the life cycle of fuel ethanol is 3.26E+05 kJ/t of C(2)H(5)OH, Compared with the chemical exergy of 1 t of ethanol (calculated as 34.56E + 06 kJ). the exergy loss from the life cycle`s atmospheric emission represents 1.11% of the product`s exergy. The activity that most contributes to atmospheric emission chemical exergy losses is the harvesting of sugarcane through the methane emitted in burning. Suggestions for improved environmental quality and greater efficiency of the life cycle of fuel ethanol with cogenerated energy are: harvesting the sugarcane without burning, renewable fuels should be used in tractors, trucks and buses instead of fossil fuel and the transportation of products and input should be logistically optimized. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the lifecycle assessment (LCA) of fuel ethanol, as 100% of the vehicle fuel, from sugarcane in Brazil. The functional unit is 10,000 km run in an urban area by a car with a 1,600-cm(3) engine running on fuel hydrated ethanol, and the resulting reference flow is 1,000 kg of ethanol. The product system includes agricultural and industrial activities, distribution, cogeneration of electricity and steam, ethanol use during car driving, and industrial by-products recycling to irrigate sugarcane fields. The use of sugarcane by the ethanol agribusiness is one of the foremost financial resources for the economy of the Brazilian rural area, which occupies extensive areas and provides far-reaching potentials for renewable fuel production. But, there are environmental impacts during the fuel ethanol lifecycle, which this paper intents to analyze, including addressing the main activities responsible for such impacts and indicating some suggestions to minimize the impacts. This study is classified as an applied quantitative research, and the technical procedure to achieve the exploratory goal is based on bibliographic revision, documental research, primary data collection, and study cases at sugarcane farms and fuel ethanol industries in the northeast of SA o pound Paulo State, Brazil. The methodological structure for this LCA study is in agreement with the International Standardization Organization, and the method used is the Environmental Design of Industrial Products. The lifecycle impact assessment (LCIA) covers the following emission-related impact categories: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. The results of the fuel ethanol LCI demonstrate that even though alcohol is considered a renewable fuel because it comes from biomass (sugarcane), it uses a high quantity and diversity of nonrenewable resources over its lifecycle. The input of renewable resources is also high mainly because of the water consumption in the industrial phases, due to the sugarcane washing process. During the lifecycle of alcohol, there is a surplus of electric energy due to the cogeneration activity. Another focus point is the quantity of emissions to the atmosphere and the diversity of the substances emitted. Harvesting is the unit process that contributes most to global warming. For photochemical ozone formation, harvesting is also the activity with the strongest contributions due to the burning in harvesting and the emissions from using diesel fuel. The acidification impact potential is mostly due to the NOx emitted by the combustion of ethanol during use, on account of the sulfuric acid use in the industrial process and because of the NOx emitted by the burning in harvesting. The main consequence of the intensive use of fertilizers to the field is the high nutrient enrichment impact potential associated with this activity. The main contributions to the ecotoxicity impact potential come from chemical applications during crop growth. The activity that presents the highest impact potential for human toxicity (HT) via air and via soil is harvesting. Via water, HT potential is high in harvesting due to lubricant use on the machines. The normalization results indicate that nutrient enrichment, acidification, and human toxicity via air and via water are the most significant impact potentials for the lifecycle of fuel ethanol. The fuel ethanol lifecycle contributes negatively to all the impact potentials analyzed: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Concerning energy consumption, it consumes less energy than its own production largely because of the electricity cogeneration system, but this process is highly dependent on water. The main causes for the biggest impact potential indicated by the normalization is the nutrient application, the burning in harvesting and the use of diesel fuel. The recommendations for the ethanol lifecycle are: harvesting the sugarcane without burning; more environmentally benign agricultural practices; renewable fuel rather than diesel; not washing sugarcane and implementing water recycling systems during the industrial processing; and improving the system of gases emissions control during the use of ethanol in cars, mainly for NOx. Other studies on the fuel ethanol from sugarcane may analyze in more details the social aspects, the biodiversity, and the land use impact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several papers have reported the advantageous combination of chitosan and ceramic particles for such applications as biomimetic scaffolds, membranes, pollution remediation and gelcasting complex shapes. This work presents a novel gelcasting consolidation mechanism, based on the effects of pH changes on chitosan solubility and zeta potential of alumina particles. Unlike other chitosan-based gelcasting methods, it employs a small content of organic material (lower than 3 wt%) and does not require crosslinking agents (such as glutaraldehyde). With this new method alumina beads with 0.5-1 mm diameter could be produced, whose porosity and specific surface area could be tuned for various applications. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed Synchrotron X-ray diffraction (XRD) analyses of internal residual stresses in monolithic samples of a newly developed Li(2)O-Al(2)O(3)-SiO(2) (LAS) glass-ceramic produced by sintering and in a commercial LAS glass-ceramic, CERAN (R), produced by the traditional crystal nucleation and growth treatments. The elastic constants were measured by instrumented indentation and a pulse-echo technique. The thermal expansion coefficient of virgilite was determined by high temperature XRD and dilatometry. The c-axis contracts with the increasing temperature whereas the a-axis does not vary significantly. Microcracking of the microstructure affects the thermal expansion coefficients measured by dilatometry and thermal expansion hysteresis is observed for the sintered glass-ceramic as well as for CERAN (R). The measured internal stress is quite low for both glass-ceramics and can be explained by theoretical modeling if the high volume fraction of the crystalline phase (virgilite) is considered. Using a modified Green model, the calculated critical (glass) island diameter for spontaneous cracking agreed with experimental observations. The experimental data collected also allowed the calculation of the critical crystal grain diameters for grain-boundary microcracking due to the anisotropy of thermal expansion of virgilite and for microcracking in the residual glass phase surrounding the virgilite particles. All these parameters are important for the successful microstructural design of sintered glass-ceramics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the procedures of the analysis Of Pollutant gases, as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) emitted by engines, using high-resolution gas chromatography (HRGC). In a broad sense, CI engine burning diesel was compared with B10 and a drastic reduction was observed in the emissions of the aromatic compounds by using B10. Especially for benzene, the reduction of concentrations occurs on the level of about 19.5%. Although a concentration value below 1 mu g ml(-1) has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The residues generation is a quite serious problem in several industrial areas and also in the lumbering area. The search for the elimination or reduction of the volume of generated residues is endless, however limited, resulting in the search for a proper destination or better use, instead of simply burning it. A lot of uses and services are commonly proposed, but with low aggregated value to the residue. This work shows the usage viability of different discarded residues and wood composites in the production of an electric guitar. Cupiuba, ipe and jatoba residues have been used besides wood composites of pinus. The residues and wood composites have shown appropriate resistance, surfacing quality and design terms, and could be used to substitute the traditionally wood used in the production of the instrument as well as in other products of similar characteristics and with larger aggregated value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous ceramic samples were prepared from aqueous foam incorporated alumina suspension for application as hot aerosol filtering membrane. The procedure for establishment of membrane features required to maintain a desired flow condition was theoretically described and experimental work was designed to prepare ceramic membranes to meet the predicted criteria. Two best membranes, thus prepared, were selected for permeability tests up to 700 degrees C and their total and fractional collection efficiencies were experimentally evaluated. Reasonably good performance was achieved at room temperature, while at 700 degrees C, increased permeability was obtained with significant reduction in collection efficiency, which was explained by a combination of thermal expansion of the structure and changes in the gas properties. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer-modified mortar is widely used to set ceramic tiles used as external finishing for high rise buildings in countries such as Brazil, Israel, Singapore and Portugal, mainly because it shows better bond strength and flexibility as compared to the traditional ones. Despite this, the results in the literature already published concerning the long-term performance of those composite mortars are is not conclusive. This paper, based on a laboratory program, compared the performance over time of four commercial polymer-modified adhesive mortars exposed to a typical Brazilian outdoor aging environment and to an indoor environment in terms of mortar flexibility and the bond strength to porcelain tiles. The results show that under laboratory condition, the mortars are more flexible and have higher bond strength than under external condition, and that there is an important correlation between the transversal deformability and the bond strength. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Construction and Demolition Waste (CDW) represents. about 50% of the total Brazilian municipal solid waste: thus, recycling represents huge benefits both in environmental and economic perspectives. Herein, the chemical characterization results of three samples from two different recycling plants from the State of Sao Paulo is prevented. The results demonstrated that the visual classification into grey and red is not related to the chemical composition but mostly to the grain size fraction. The chemical composition of the CDW varies according to the content of cement paste, natural aggregates (quartz sand or granite), red ceramic and clay. Furthermore, the production of recycled concrete aggregates requires two crushing stages to meet the technical standards. The sand fraction (below 4.8 mm) presents high grades of SiO(2), which indicates the liberation of cement paste to fines (< 0.15 mm). The fines have a great potential to be used in the cement industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well established, the importance of the measurement of soil suction for the assessment of mechanical and hydraulic behavior of unsaturated soils. Among the methods to obtain the soil suction, the tensiometer is one of the most convenient and reliable. However conventional tensiometer has a limitation related to the maximum suction it is capable of measure. This limitation was overcome by Ridley and Burland (1993), with the development of a high capacity tensiometer, which is capable of measure suction well above 100 kPa. The equipment has a quick response time, allowing the determination of suction in minutes. This paper presents a study about the factors that affect the equilibrium time for high capacity tensiometers in the laboratory. Soil specimens were prepared at three different conditions, creating different soil structures. In addition to that an investigation about the characteristic of the interface that is required between the soil sample and the porous ceramic of the tensiometer was carried out; showing the role of the paste on the technique. The results also suggested that it is possible to infer the hydraulic conductivity function using the equilibrium curve obtained during the measurement of the soil suction using the high capacity tensiometer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin hard coatings on components and tools are used increasingly due to the rapid development in deposition techniques, tribological performance and application skills. The residual stresses in a coated surface are crucial for its tribological performance. Compressive residual stresses in PVD deposited TiN and DLC coatings were measured to be in the range of 0.03-4 GPa on steel substrate and 0.1-1.3 GPa on silicon. MoS(2) coatings had tensional stresses in the range of 0.8-1.3 on steel and 0.16 GPa compressive stresses on silicon. The fracture pattern of coatings deposited on steel substrate were analysed both in bend testing and scratch testing. A micro-scale finite element method (FEM) modelling and stress simulation of a 2 mu m TiN-coated steel surface was carried out and showed a reduction of the generated tensile buckling stresses in front of the sliding tip when compressive residual stresses of 1 GPa were included in the model. However, this reduction is not similarly observed in the scratch groove behind the tip, possibly due to sliding contact-induced stress relaxation. Scratch and bending tests allowed calculation of the fracture toughness of the three coated surfaces, based on both empirical crack pattern observations and FEM stress calculation, which resulted in highest values for TiN coating followed by MoS(2) and DLC coatings, being K(C) = 4-11, about 2, and 1-2 MPa M(1/2), respectively. Higher compressive residual stresses in the coating and higher elastic modulus of the coating correlated to increased fracture toughness of the coated surface. (C) 2009 Elsevier B.V. All rights reserved.