236 resultados para Celestial Mechanics
Resumo:
This article presents a methodology for calculating the gains of an output feedback controller for active vibration control of flexible rotors. The methodology is based on modal reduction. The proportional and derivative gains are obtained by adjusting the first two damping factors of the system and keeping the lengths of the two eigenvalues constant in the real-imaginary plane. The methodology is applied to an industrial gas compressor supported by active tilting-pad journal bearings. The unbalance response functions and mode shapes of the flexible rotor with and without active control are presented, showing significative improvement in damping reserve with the control. The importance of sensor location is emphasized, on the basis of the energy necessary to operate the active system over the entire frequency range studied. The best results are obtained by a decentralized controller, observing displacement and velocity of the shaft at the bearing positions.
Resumo:
Hybrid active-passive damping treatments combine the reliability, low cost and robustness of viscoelastic damping treatments and the high-performance, modal selective and adaptive piezoelectric active control. Numerous hybrid damping treatments have been reported in the literature. They differ mainly by the relative positions of viscoelastic treatments, sensors and piezoelectric actuators. In this work we present an experimental analysis of three active-passive damping design configurations applied to a cantilever beam. In particular, two design configurations based on the extension mode of piezoelectric actuators combined with viscoelastic constrained layer damping treatments and one design configuration with shear piezoelectric actuators embedded in a sandwich beam with viscoelastic core are analyzed. For comparison purposes, a purely active design configuration with an extension piezoelectric actuator bonded to an elastic beam is also analyzed. The active-passive damping performance of the four design configurations is compared. Results show that active-passive design configurations provide more reliable and wider-range damping performance than the purely active configuration.
Resumo:
Embedded sensitivity analysis has proven to be a useful tool in finding optimum positions of structure reinforcements. However, it was not clear how sensitivities obtained from the embedded sensitivity method were related to the normal mode, or operational mode, associated to the frequency of interest. In this work, this relationship is studied based on a finite element of a slender sheet metal piece, with preponderant bending modes. It is shown that higher sensitivities always occur at nodes or antinodes of the vibrating system. [DOI: 10.1115/1.4002127]
Resumo:
Surface heat treatment in glasses and ceramics, using CO(2) lasers, has attracted the attention of several researchers around the world due to its impact in technological applications, such as lab-on-a-chip devices, diffraction gratings and microlenses. Microlens fabrication on a glass surface has been studied mainly due to its importance in optical devices (fiber coupling, CCD signal enhancement, etc). The goal of this work is to present a systematic study of the conditions for microlens fabrications, along with the viability of using microlens arrays, recorded on the glass surface, as bidimensional codes for product identification. This would allow the production of codes without any residues (like the fine powder generated by laser ablation) and resistance to an aggressive environment, such as sterilization processes. The microlens arrays were fabricated using a continuous wave CO(2) laser, focused on the surface of flat commercial soda-lime silicate glass substrates. The fabrication conditions were studied based on laser power, heating time and microlens profiles. A He-Ne laser was used as a light source in a qualitative experiment to test the viability of using the microlenses as bidimensional codes.
Resumo:
The machining of hardened steels has always been a great challenge in metal cutting, particularly for drilling operations. Generally, drilling is the machining process that is most difficult to cool due to the tool`s geometry. The aim of this work is to determine the heat flux and the coefficient of convection in drilling using the inverse heat conduction method. Temperature was assessed during the drilling of hardened AISI H13 steel using the embedded thermocouple technique. Dry machining and two cooling/lubrication systems were used, and thermocouples were fixed at distances very close to the hole`s wall. Tests were replicated for each condition, and were carried out with new and worn drills. An analytical heat conduction model was used to calculate the temperature at tool-workpiece interface and to define the heat flux and the coefficient of convection. In all tests using new and worn out drills, the lowest temperatures and decrease of heat flux were observed using the flooded system, followed by the MQL, considering the dry condition as reference. The decrease of temperature was directly proportional to the amount of lubricant applied and was significant in the MQL system when compared to dry cutting. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with analysis of multiple random crack propagation in two-dimensional domains using the boundary element method (BEM). BEM is known to be a robust and accurate numerical technique for analysing this type of problem. The formulation adopted in this work is based on the dual BEM, for which singular and hyper-singular integral equations are used. We propose an iterative scheme to predict the crack growth path and the crack length increment at each time step. The proposed scheme able us to simulate localisation and coalescence phenomena, which is the main contribution of this paper. Considering the fracture mechanics analysis, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of simple and multi-fractured domains, loaded up to the rupture, are considered to illustrate the applicability of the proposed scheme. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the method of Galerkin and the Askey-Wiener scheme are used to obtain approximate solutions to the stochastic displacement response of Kirchhoff plates with uncertain parameters. Theoretical and numerical results are presented. The Lax-Milgram lemma is used to express the conditions for existence and uniqueness of the solution. Uncertainties in plate and foundation stiffness are modeled by respecting these conditions, hence using Legendre polynomials indexed in uniform random variables. The space of approximate solutions is built using results of density between the space of continuous functions and Sobolev spaces. Approximate Galerkin solutions are compared with results of Monte Carlo simulation, in terms of first and second order moments and in terms of histograms of the displacement response. Numerical results for two example problems show very fast convergence to the exact solution, at excellent accuracies. The Askey-Wiener Galerkin scheme developed herein is able to reproduce the histogram of the displacement response. The scheme is shown to be a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an accurate and efficient solution for the random transverse and angular displacement fields of uncertain Timoshenko beams. Approximate, numerical solutions are obtained using the Galerkin method and chaos polynomials. The Chaos-Galerkin scheme is constructed by respecting the theoretical conditions for existence and uniqueness of the solution. Numerical results show fast convergence to the exact solution, at excellent accuracies. The developed Chaos-Galerkin scheme accurately approximates the complete cumulative distribution function of the displacement responses. The Chaos-Galerkin scheme developed herein is a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The selection criteria for Euler-Bernoulli or Timoshenko beam theories are generally given by means of some deterministic rule involving beam dimensions. The Euler-Bernoulli beam theory is used to model the behavior of flexure-dominated (or ""long"") beams. The Timoshenko theory applies for shear-dominated (or ""short"") beams. In the mid-length range, both theories should be equivalent, and some agreement between them would be expected. Indeed, it is shown in the paper that, for some mid-length beams, the deterministic displacement responses for the two theories agrees very well. However, the article points out that the behavior of the two beam models is radically different in terms of uncertainty propagation. In the paper, some beam parameters are modeled as parameterized stochastic processes. The two formulations are implemented and solved via a Monte Carlo-Galerkin scheme. It is shown that, for uncertain elasticity modulus, propagation of uncertainty to the displacement response is much larger for Timoshenko beams than for Euler-Bernoulli beams. On the other hand, propagation of the uncertainty for random beam height is much larger for Euler beam displacements. Hence, any reliability or risk analysis becomes completely dependent on the beam theory employed. The authors believe this is not widely acknowledged by the structural safety or stochastic mechanics communities. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a formulation to deal with dynamic thermomechanical problems by the finite element method. The proposed methodology is based on the minimum potential energy theorem written regarding nodal positions, not displacements, to solve the mechanical problem. The thermal problem is solved by a regular finite element method. Such formulation has the advantage of being simple and accurate. As a solution strategy, it has been used as a natural split of the thermomechanical problem, usually called isothermal split or isothermal staggered algorithm. Usual internal variables and the additive decomposition of the strain tensor have been adopted to model the plastic behavior. Four examples are presented to show the applicability of the technique. The results are compared with other authors` numerical solutions and experimental results. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Inverse analysis is currently an important subject of study in several fields of science and engineering. The identification of physical and geometric parameters using experimental measurements is required in many applications. In this work a boundary element formulation to identify boundary and interface values as well as material properties is proposed. In particular the proposed formulation is dedicated to identifying material parameters when a cohesive crack model is assumed for 2D problems. A computer code is developed and implemented using the BEM multi-region technique and regularisation methods to perform the inverse analysis. Several examples are shown to demonstrate the efficiency of the proposed model. (C) 2010 Elsevier Ltd. All rights reserved,
Resumo:
The most ordinary finite element formulations for 3D frame analysis do not consider the warping of cross-sections as part of their kinematics. So the stiffness, regarding torsion, should be directly introduced by the user into the computational software and the bar is treated as it is working under no warping hypothesis. This approach does not give good results for general structural elements applied in engineering. Both displacement and stress calculation reveal sensible deficiencies for both linear and non-linear applications. For linear analysis, displacements can be corrected by assuming a stiffness that results in acceptable global displacements of the analyzed structure. However, the stress calculation will be far from reality. For nonlinear analysis the deficiencies are even worse. In the past forty years, some special structural matrix analysis and finite element formulations have been proposed in literature to include warping and the bending-torsion effects for 3D general frame analysis considering both linear and non-linear situations. In this work, using a kinematics improvement technique, the degree of freedom ""warping intensity"" is introduced following a new approach for 3D frame elements. This degree of freedom is associated with the warping basic mode, a geometric characteristic of the cross-section, It does not have a direct relation with the rate of twist rotation along the longitudinal axis, as in existent formulations. Moreover, a linear strain variation mode is provided for the geometric non-linear approach, for which complete 3D constitutive relation (Saint-Venant Kirchhoff) is adopted. The proposed technique allows the consideration of inhomogeneous cross-sections with any geometry. Various examples are shown to demonstrate the accuracy and applicability of the proposed formulation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This paper deals with the application of the lumped dissipation model in the analysis of reinforced concrete structures, emphasizing the nonlinear behaviour of the materials The presented model is based on the original models developed by Cipollina and Florez-Lopez (1995) [12]. Florez-Lopez (1995) [13] and Picon and Florez-Lopez (2000) [14] However, some modifications were introduced in the functions that control the damage evolution in order to improve the results obtained. The efficiency of the new approach is evaluated by means of a comparison with experimental results on reinforced concrete structures such as simply supported beams, plane frames and beam-to-column connections Finally, the adequacy of the numerical model representing the global behaviour of framed structures is investigated and the limits of the analysis are discussed (C) 2009 Elsevier Ltd All rights reserved
Resumo:
In this paper a new boundary element method formulation for elastoplastic analysis of plates with geometrical nonlinearities is presented. The von Mises criterion with linear isotropic hardening is considered to evaluate the plastic zone. Large deflections are assumed but within the context of small strain. To derive the boundary integral equations the von Karman`s hypothesis is taken into account. An initial stress field is applied to correct the true stresses according to the adopted criterion. Isoparametric linear elements are used to approximate the boundary unknown values while triangular internal cells with linear shape function are adopted to evaluate the domain value influences. The nonlinear system of equations is solved by using an implicit scheme together with the consistent tangent operator derived along the paper. Numerical examples are presented to demonstrate the accuracy and the validity of the proposed formulation.
Resumo:
This work deals with analysis of cracked structures using BEM. Two formulations to analyse the crack growth process in quasi-brittle materials are discussed. They are based on the dual formulation of BEM where two different integral equations are employed along the opposite sides of the crack surface. The first presented formulation uses the concept of constant operator, in which the corrections of the nonlinear process are made only by applying appropriate tractions along the crack surfaces. The second presented BEM formulation to analyse crack growth problems is an implicit technique based on the use of a consistent tangent operator. This formulation is accurate, stable and always requires much less iterations to reach the equilibrium within a given load increment in comparison with the classical approach. Comparison examples of classical problem of crack growth are shown to illustrate the performance of the two formulations. (C) 2009 Elsevier Ltd. All rights reserved.