224 resultados para BOND STRENGTH
Resumo:
Adhesive mortars are widely used to set porcelain stoneware tiles on buildings because their bond strength and flexibility properties increase the cladding serviceability. However, their long-term performance is not well understood, mainly the degradation of the polymeric matrix. The influence of moisture content on the flexibility of six adhesive mortars is investigated, based on standard EN 12002. Four of them have defined formulations and the other two are commercial and are widely used to set porcelain stoneware tiles on building facades in Brazil. The results show that moisture content above 6% is sufficient to reduce 50% of the mortar deformability, but that the drying process allows it to recover to a value similar to that prior to saturation; a logarithmic function best fits the correlation between moisture content and flexibility; water immersion increases matrix rigidity. It is suggested that standards should consider flexibility tests on both dried and wet samples as a requirement for polymer-modified mortars. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Ethylene/vinyl acetate (EVA) copolymer. as latex or redispersable powder, is added to mortars and concrete to improve the fracture toughness, impermeability and bond strength to various substrates. The physical and chemical interactions were already proved after one day of hydration but during the first hour just the physical interaction was identified and some evidences of a chemical interaction. The aim of this paper was to evaluate the chemical interaction between EVA and Portland cement during the first hours of hydration in the thermogravimetric analysis. The results confirmed that the EVA hydrolyses in pH alkaline and consumes calcium ions from the solution, forming an organic salt (calcium acetate). reducing the calcium hydroxide content. And, its interaction occurred in the first 15 min of hydration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The purposes of this study were to evaluate in vitro the influence of different frequencies of Er:YAG laser on the human dentin caries removal capacity. Thirty fragments obtained from third molars were randomly assigned into three groups (n = 10) according to the laser frequency used: 4, 6, and 10 Hz. The caries lesion (+/-1 mm deep) was induced before the irradiation by S. mutans cultures for 6 weeks. The specimens of all groups were irradiated with 200 mJ of energy in noncontact and focused mode under constant refrigeration (water flow: 2.5 mL/min). Quantitative analysis of the caries removal was performed by DIAGNOdent (TM) and the Axion Vision (TM) software. Qualitative analysis was performed by Scanning electron microscope (SEM) and light microscope (LM). Data were analyzed by ANOVA and Fishers` tests. The DIAGNOdent (TM) revealed that the caries removal was similar with 4 and 6 Hz and was superior with 10 Hz (P < 0.05). The analysis with Axion Vision (TM) software revealed that the caries removal was similar with 6 and 10 Hz and the 4 Hz group promoted the lowest caries removal. Through SEM morphologic analysis, some specimens irradiated with 4 Hz presented, under the demineralized dentin, a disorganized collagenous matrix. The LM images revealed that all frequencies used promoted irregular caries removal, being observed over preparations with 6 and 10 Hz. It can be concluded that the increase of Er:YAG laser frequency provided a higher dentin caries removal without selectivity to the disorganized dentin. Microsc. Res. Tech. 74:281-286, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
The purpose of this in vitro study was to compare the bond strength between fiber post and laser-treated root canals. Forty single-rooted bovine teeth were endodontically treated and randomly divided into four groups of equal size according to the root canal treatment: group 1 conventional treatment (without laser irradiation); group 2 Nd:YAG laser (1.5 W, 10 Hz, 100 mJ); group 3 Er,Cr:YSGG laser (0.75 W, 20 Hz); and group 4 Nd:YAG + Er,Cr:YSGG lasers. The fiber posts were cemented with an adhesive system + resin cement, in accordance with the manufacturer`s instructions. A mini acrylic pipe was fixed on the coronal section of the post using a light-polymerized resin. Specimens were mounted on an acrylic pipe with a self-polymerized resin. Retention forces were determined using a universal testing machine (0.5 mm/min). Data were analyzed using one-way ANOVA and Tukey tests (p < 0.05). The post retention force in group 2 was found to be lower than that in the other experimental groups. Fractures were observed at the interface between the dentin and the resin in all groups. High-intensity lasers can be used in conventional endodontic treatment; however, root canal surface irradiation using the Nd:YAG laser was shown to negatively affect the post retention force.
Resumo:
Background and Objectives: This study evaluated the hybrid layer (HL) morphology created by three adhesive systems (AS) on dentin surfaces treated with Er:YAG laser using two irradiation parameters. Study Design: Occlusal flat dentin surfaces of 36 human third molars were assigned into nine groups (n = 4) according to the following ASs: one bottle etch&rinse Single Bond Plus (3M ESPE), two-step Clearfil Protect Bond (Kuraray), and all-in-one S3 Bond (Kuraray) self-etching, which were labeled with rhodamine B or fluorescein isothiocyanate dextran and were applied to dentin surfaces that were irradiated with Er:YAG laser at either 120 (38.7 J/cm(2)) or 200 mJ/pulse (64.5 J/cm(2)), or were applied to untreated dentin surfaces (control group). The ASs were light-activated following MI and the bonded surfaces were restored with resin composite Z250 (3M ESPE). After 24 hours of storage in vegetable oil, the restored teeth were vertically, serially sectioned into 1-mm thick slabs, which had the adhesive interfaces analyzed with confocal laser microscope (CLSM-LSM 510 Meta). CLSM images were recorded in the fluorescent mode from three different regions along each bonded interface. Results: Non-uniform HL was created on laser-irradiated dentin surfaces regardless of laser irradiation protocol for all AS, while regular and uniform HL was observed in the control groups. ""Stretch mark""-like red lines were found within the HL as a result of resin infiltration into dentin microfissures, which were predominantly observed in 200 mJ/pulse groups regardless of AS. Poor resin infiltration into peritubular dentin was observed in most regions of adhesive interfaces created by all ASs on laser-irradiated dentin, resulting in thin resin tags with neither funnel-shaped morphology nor lateral resin projections. Conclusion: Laser irradiation of dentin surfaces at 120 or 200 mJ/pulse resulted in morphological changes in HL and resin tags for all ASs evaluated in the study. Lasers Surg. Med. 42:662-670, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
This study aimed to test the hypothesis that dentine alterations induced by 810 nm-diode laser may affect the interaction between root canal sealers and the dentin wall. Seventy-two single root human teeth were selected and root canals were enlarged with K-files. Dentine was treated with 0.5% NaOCl and 17% EDTA-T and irradiated (laser group) by diode laser (810 nm/P = 2.5W/I = 1989 W/cm(2)) or remained non-irradiated (control group). Six samples per group were analyzed by scanning electron microscopy (SEM). The remaining samples of each group were divided into three subgroups (n = 10) and sealed with one of the tested sealers (N-Rickert/AHPlus (TM)/Apexit (R)). Apical leakage was estimated by evaluating penetration of 0.5% methylene-blue dye. SEM analysis revealed that dentine at the apical third in irradiated samples was melted and fusioned whereas non-irradiated samples exhibited opened dentinal tubules. Despite the morphological changes induced by irradiation, laser did not affect the sealing ability of N-Rickert and AHPlus (TM) sealers. However, the length of apical leakage in roots filled with Apexit (R) was lower in irradiated root canals than in non-irradiated samples (p < 0.05). Morphological changes of root canal walls promoted by diode laser irradiation may improve de sealing ability of Apexit (R), a calcium hydroxide-based sealer, suggesting that improved sealing promoted by irradiation may represent an additional factor contributing to the endodontic clinical outcome.
Resumo:
The aim of this in vitro study was to evaluate some parameters of dental etching when irradiated with an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser. One-hundred sound human third molars were selected and randomly distributed into ten groups (n = 10). The class V cavities of group 1 (control) were prepared with a bur and etched with 37% phosphoric acid, while groups G2 to G10, were prepared with laser (5 W, 88.46 J/cm(2), 90/70% air/water) and etched with the following powers: G3 and G4, 0.25 W; G5 and G6, 0.5 W; G7 and G8, 0.75 W; G9 and G10, 1 W. Group G2 received no laser etching. Prior to restoration, G2, G4, G6, G8 and G10 received acid etching. After restoration, all samples were submitted to a microleakage test. According to statistical analysis (Kruskal-Wallis and Dunn`s tests), G10 presented the lowest microleakage values (P < 0.05). The other groups showed no differences between them. Etching with Er,Cr:YSGG laser (1 W) followed by phosphoric acid was effective in reducing the microleakage of class V restorations.
Resumo:
Although the cariostatic effects of CO(2) laser on enamel have been shown, its effects on root surface demineralization remains uncertain. The objectives of this in vitro research was to establish safe parameters for a pulsed 10.6 mu m CO(2) laser and to evaluate its effect on morphological features of the root surface, as well as on the reduction of root demineralization. Ninety-five human root surfaces were randomly divided into five groups: G1-No treatment (control); G2-2.5 J/cm(2); G3-4.0 J/cm(2); G4-5.0 J/cm(2); and G5-6.0 J/cm(2). Intrapulpal temperature was evaluated during root surface irradiation by a thermocouple and morphological changes were evaluated by SEM. After the surface treatment, the specimens were submitted to a 7-day pH-cycling model. Subsequently, the cross-sectional Knoop microhardness values were measured. For all irradiated groups, intrapulpal temperature changes were less than 1.5 degrees C. Scanning electron microscopy images indicated that fluences as low as 4.0 J/cm(2) were sufficient to induce morphological changes in the root surface. Additionally, for fluences reaching or exceeding 4.0 J/cm(2), laser-induced inhibitory effects on root surface demineralization were observed. It was concluded that laser energy density in the range of 4.0 to 6.0 J/cm(2) could be applied to a dental root to reduce demineralization of this surface without compromising pulp vitality.
Resumo:
Purpose: The objective of this in vitro study was to compare the degree of microleakage of composite restorations performed by lasers and conventional drills associated with two adhesive systems. Materials and Methods: Sixty bovine teeth were divided into 6 groups (n = 10). The preparations were performed in groups 1 and 2 with a high-speed drill (HID), in groups 3 and 5 with Er:YAG laser, and in groups 4 and 6 with Er,Cr:YSGG laser. The specimens were restored with resin composite associated with an etch-and-rinse two-step adhesive system (Single Bond 2 [SB]) (groups 1, 3, 4) and a self-etching adhesive (One-Up Bond F [OB]) (groups 2, 5, 6). After storage, the specimens were polished, thermocycled, immersed in 50% silver nitrate tracer solution, and then sectioned longitudinally. The specimens were placed under a stereomicroscope (25X) and digital images were obtained. These were evaluated by three blinded evaluators who assigned a microleakage score (0 to 3). The original data were submitted to Kruskal-Wallis and Mann-Whitney statistical tests. Results: The occlusal/enamel margins demonstrated no differences in microleakage for all treatments (p > 0.05). The gingival/dentin margins presented similar microleakage in cavities prepared with Er:YAG, Er,Cr:YSGG, and HD using the etch-and-rinse two-step adhesive system (SB) (p > 0.05); otherwise, both Er:YAG and Er,Cr:YSGG lasers demonstrated lower microleakage scores with OB than SB adhesive (p < 0.05). Conclusion: The microleakage score at gingival margins is dependent on the interaction of the hard tissue removal tool and the adhesive system used. The self-etching adhesive system had a lower microleakage score at dentin margins for cavities prepared with Er:YAG and Er,Cr:YSGG than the etch-and-rinse two-step adhesive system.
Resumo:
The aim of this study was to investigate whether distinct cooling of low fluence erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation would influence adhesion. Main factors tested were: substrates (two), irradiation conditions (three), and adhesives (three). A 750 mu m diameter tip was used, for 50 s, 1 mm from the surface, with a 0.25 W power output, 20 Hz, energy density of 2.8 J/cm(2) with energy per pulse of 12.5 mJ. When applied, water delivery rate was 11 ml/min. The analysis of variance (ANOVA) showed that laser conditioning significantly decreased the bond strength of all adhesive systems applied on enamel. On dentin, laser conditioning significantly reduced bond strength of etch-and-rinse and one-step self-etch systems; however, laser irradiation under water cooling did not alter bonding of two-step self-etching. It may be concluded that the irradiation with Er,Cr:YSGG laser at 2.8 J/cm(2) with water coolant was responsible for a better adhesion to dentin, while enamel irradiation reduced bond strength, irrespective of cooling conditions.
Resumo:
Purpose: The aim of this in vitro study was to evaluate the microtensile bond strength (mu TBS) and hybrid layer morphology of different adhesive systems, either followed by treatment with Nd:YAG laser irradiation or not. Previous studies have shown the effects of Nd:YAG laser irradiation on the dentin surface at restoration margins, but there are few reports about the significance of the irradiation on the hybrid layer. Materials and Methods: The flattened coronal and root dentin samples of 24 bovine teeth were randomly divided into 8 groups, according to the adhesive system used - Scotchbond Multi Purpose (SBMP) or Clearfil SE Bond (CSEB) - and were either irradiated with Nd:YAG or not, with different parameters: 0.8 W/10 Hz, 0.8 W/20 Hz, 1.2 W/10 Hz, 1.2 W/20 Hz. The left sides of specimens were the control groups, and right sides were irradiated. A composite crown was built over bonded surfaces and stored in water (24 h at 37 degrees C). Specimens were sectioned vertically into slabs that were subjected to mu TBS testing and observed by SEM. Results: Control groups (27.81 +/- 1.38) showed statistically higher values than lased groups (21.37 +/- 0.99), and CSEB control group values (31.26 +/- 15.71) were statistically higher than those of SBMP (24.3 +/- 10.66). There were no significant differences between CSEB (20.34 +/- 10.01) and SBMP (22.43 +/- 9.82) lased groups. Among parameters tested, 0.8 W/10 Hz showed the highest value (25.54 +/- 11.74). Nd:YAG laser irradiation caused dentin to melt under the adhesive layer of both adhesive systems tested. Conclusion: With the parameters used in this study, Nd:YAG laser irradiation of the hybrid layer promoted morphological changes in dentin and negatively influenced the bond strength of both adhesive systems.
Resumo:
The purpose of this study was to evaluate the influence of an additional Er:YAG laser conditioning step after laser cavity preparations, on the microleakage of class V composite restorations. Forty-eight bovine incisors were randomly divided into four groups: G1(control) cavities prepared with bur, G2- cavities prepared with laser (400 mJ/2 Hz), G3-cavities prepared and subsequently conditioned with Er:YAG laser (60 mJ/2 Hz); G4-idem for G3, but the laser conditioning was carried out without water-spray. All the cavities were restored using Clearfill SE Bond (R) and Z-250 (R) composite resin. The samples were thermal cycled for 700 cycles and then immersed in 50% silver nitrate solution. The sectioned restorations were exposed to a photoflood lamp to reveal silver nitrate penetration. The Kruskal-Walis one-way analyses of variance test and post hoc Wilcoxon pair-wise comparison were used to compare microleakage degrees. At the gingival margin G2 showed a lower microleakage mean than the control bur-prepared cavities (p = 0.0003). At occlusal margins there were no statistically significant differences between the groups (p = 0.28). It may be concluded that Er:YAG laser class V cavity preparations do not need to be followed by an additional laser conditioning step to result in levels of microleakage similar to or lower than those obtained after bur preparations. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 87B: 538-543, 2008
Resumo:
This study evaluated the influence of the dental substrates obtained after the use of different caries removal techniques on bonding of a self-etching system. Forty, extracted, carious, human molars were ground to expose flat surfaces containing caries-infected dentine surrounded by sound dentine. The caries lesions of the specimens were removed or not (control-G1) either by round steel burs and water-cooled, low speed, handpiece (G2), or by irradiation with an erbium, chromium:yttrium scandium gallium garnet (Er,Cr:YSGG) laser (2W, 20 Hz, 35.38 J/cm(2), fiber G4 handpiece with 0.2826 mm(2), non-contact mode at a 2 mm distance, 70% air/20% water-G3) or using a chemo-mechanical method (Carisolv-G4). Caries-infected, caries-affected and sound dentines were submitted to a bonding system followed by construction of a resin-based composite crown. Hour-glass shaped samples were obtained and submitted to a micro-tensile bond test. The bond strength data were compared by analysis of variance (ANOVA), complemented by Tukey`s test (P <= 0.05). The samples of sound dentine presented higher bond strengths than did samples of caries-affected dentine, except for the groups treated with the Er,Cr:YSGG laser. The highest bond strengths were observed with the sound dentine treated with burs and Carisolv. The bond strengths to caries-affected dentine were similar in all groups. Additionally, bonding to caries-affected dentine of the Er,Cr:YSGG laser and Carisolv groups was similar to bonding to caries-infected dentine. Thus, caries-affected dentine is not an adequate substrate for adhesion. Moreover, amongst the caries removal methods tested, the Er,Cr:YSGG laser irradiation was the poorest in providing a substrate for bonding with the tested self-etching system.
Resumo:
The adhesive performance on deproteinized dentin of different self-adhesive resin cements was evaluated through microtensile bond strength (mu TBS) analysis and scanning electron microscopy (SEM). Occlusal dentin of human molars were distributed into different groups, according to the categories: adhesive cementation with two-step bonding systems-control Groups (Adper Single Bond 2 + RelyX ARC/3M ESPE; One Step Plus + Duolink/Bisco; Excite + Variolink I/Ivoclar Vivadent) and self-adhesive cementation-experimental groups (Rely X Unicem/3M ESPE; Biscem/Bisco; MultiLink Sprint/Ivoclar Vivadent). Each group was subdivided according to the dentin approach to: alpha, maintenance of collagen fibers and beta, deproteinization. The mean values were obtained, and submitted to ANOVA and Tukey test. Statistical differences were obtained to the RelyX Unicem groups (alpha = 13.59 MPa; beta = 30.19 MPa). All the BIS Group specimens failed before the mechanical tests. Dentinal deproteinization provided an improved bond performance for the self-adhesive cement Rely X Unicem, and had no negative effect on the other cementing systems studied. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 98B: 387-394, 2011.
Long-term stability of dentin matrix following treatment with various natural collagen cross-linkers
Resumo:
Objectives: Collagen disorganization is one of the main degradation patterns found in unsuccessful adhesive restorations. The hypothesis of this study was that pretreatment using natural collagen cross-linking agents rich in proanthocyanidin (PA) would improve mechanical properties and stability over time of the dentin collagen and, thus, confer a more resistant and lasting substrate for adhesive restorations. Methods: PA-based extracts, from grape seed (GSE), cocoa seed (CSE), cranberry (CRE), cinnamon (CNE) and acai berry (ACE) were applied over the demineralized dentin. The apparent elastic modulus (E) of the treated dentin collagen was analyzed over a 12 month period. Specimens were immersed in the respective solution and E values were obtained by a micro-flexural test at baseline, 10, 30, 60, 120 and 240 min. Samples were stored in artificial saliva and re-tested after 3, 6 and 12 months. Data was analyzed using ANOVA and Tukey test. Results: GSE and CSE extracts showed a time-dependent effect and were able to improve [240 min (MPa): GSE = 108.96 +/- 56.08: CSE = 59.21 +/- 24.87] and stabilize the E of the organic matrix [12 months (MPa): GSE = 40.91 +/- 19.69; CSE = 42.11 +/- 13.46]. CRE and CNE extracts were able to maintain the E of collagen matrices constant over 12 months [CRE = 11.17 +/- 7.22; CNE = 9.96 +/- 6.11; MPa]. ACE (2.64 +/- 1.22 MPa) and control groups immersed in neat distilled water (1.37 +/- 0.69 MPa) and ethanol-water (0.95 +/- 0.33 MPa) showed no effect over dentin organic matrix and enable their degradation and reduction of mechanical properties. Significance: Some PA-based extracts were capable of improving and stabilizing collagen matrices through exogenous cross-links induction. (C) 2011 Elsevier Ltd. All rights reserved.