208 resultados para AUGMENTING NEURONS
Resumo:
Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with several reported pharmacological actions. We have assessed the protective action of GA on iron-induced neuronal cell damage by employing the PC12 cell line and primary culture of rat cortical neurons (PCRCN). A strong protection by GA, assessed by the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carbox-anilide (XTT) assay, was revealed, with IC(50) values <1 mu M. GA also inhibited Fe(3+)-ascorbate reduction, iron-induced oxidative degradation of 2-deoxiribose, and iron-induced lipid peroxidation in rat brain homogenate, as well as stimulated oxygen consumption by Fe(2+) autoxidation. Absorption spectra and cyclic voltammograms of GA Fe(2+)/Fe(3+) complexes suggest the formation of a transient charge transfer complex between Fe(2+) and GA, accelerating Fe(2+) oxidation. The more stable Fe(3+) complex with GA would be unable to participate in Fenton-Haber Weiss-type reactions and the propagation phase of lipid peroxidation. The results show a potential of GA against neuronal diseases associated with iron-induced oxidative stress.
Resumo:
The perivascular nerve network expresses a Ca(2+) receptor that is activated by high extracellular Ca(2+) concentrations and causes vasorelaxation in resistance arteries. We have verified the influence of perivascular nerve fibers on the Ca(2+)-induced relaxation in aortic rings. To test our hypothesis, either pre-contracted aortas isolated from rats after sensory denervation with capsaicin or aortic rings acutely denervated with phenol were stimulated to relax with increasing extracellular Ca(2+) concentration. We also studied the role of the endothelium on the Ca(2+)-induced relaxation, and we verified the participation of endothelial/nonendothelial nitric oxide and cyclooxygenise-arachidonic acid metabolites. Additionally, the role of the sarcoplasmic reticulum, K(+) channels and L-type Ca(2+) channels on the Ca(2+)-induced relaxation were evaluated. We have observed that the Ca(2+)-induced relaxation is completely nerve independent, and it is potentiated by endothelial nitric oxide (NO). In endothelium-denuded aortic rings, indomethacin and AH6809 (PGF(2 alpha) receptor antagonist) enhance the relaxing response to Ca(2+). This relaxation is inhibited by thapsigargin and verapamil, while was not altered by tetraethylammonium. In conclusion, we have shown that perivascular nervous fibers do not participate in the Ca(2+)-induced relaxation, which is potentiated by endothelial NO. In endothelium-denuded preparations, indomethacin and AH6809 enhance the relaxation induced by Ca(2+). The relaxing response to Call was impaired by verapamil and thapsigargin, revealing the importance of L-type Ca(2+) channels and sarcoplasmic reticulum in this response. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
To determine the ability of probiotic lactobacilli to improve the treatment of vulvovaginal candidiasis (VVC) using a randomized, double-blind and placebo-controlled trial. Fifty-five women diagnosed with VVC by vaginal discharge positive for Candida spp. (according to culture method) associated with at least one of the symptoms (itching and burning vaginal feeling, dyspareunia and dysuria), were treated with single dose of fluconazole (150 mg) supplemented every morning for the following 4 weeks with two placebo or two probiotic capsules (containing Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14). At 4 weeks, the probiotic treated group showed significantly less vaginal discharge associated with any of the above mentioned symptoms (10.3%vs 34.6%; P = 0.03) and lower presence of yeast detected by culture (10.3%vs 38.5%; P = 0.014). This study has shown that probiotic lactobacilli can increase the effectiveness of an anti-fungal pharmaceutical agent in curing disease. This novel finding of probiotic lactobacilli augmenting the cure rate of yeast vaginitis, not only offers an alternative approach to a highly prevalent condition that adversely affects the quality of life of women around the world, but also raises the question of how this combination works.
Resumo:
In this study, we verified the possible role of cyclophosphamide (CY) in protecting or not against neuronal losses in young and aged male Calomys callosus chronically infected with the MORC-1 strain of Trypanosoma cruzi through numerical quantification of neurons from the myenteric plexus of the colon and quantification of nitric-oxide concentration (NO) during the acute and chronic phase of infection. For this purpose, groups of young C. callosus were infected with the MORC-1 strain of T. cruzi. A group of infected animals received i.p. 0.2 mg/ml genuxal dissolved in distilled water treatment with CY. NO concentration in aged animals displayed reduced levels when compared to those found in young animals. No significant alterations in the number of neurons were observed in young animals, but for aged ones, a protective role of CY in reducing neuron loss was noted, in addition to enhancing the neuronal volume, area, and perimeter. These results suggest that CY administration, depending on the dose and time span, can act as a protective agent against neuronal losses.
Resumo:
The protective role of Cyclophosphamide was studied in this work. Young male Calomys callosus were infected with Trypanosoma cruzi and allowed to age. Cyclophosphamide therapy was administered to animals during acute and late chronic phases of infection. Esophageal neurons were counted, displaying enhanced neuronal loss for the young and treated infected groups. For aged and cyclophosphamide treated animals, a protection was observed through a reduced loss of neurons as compared to the young and infected groups. Enhanced nitric oxide concentrations were observed for young animals as compared to aged counterparts. Splenocyte proliferation was reduced during the acute phase in comparison with those found in the chronic phase. Morphometry of neuronal body displayed a significant reduction concerning the area, perimeter, diameter and volume for aged animals as compared to young groups. These results indicate that the protective effects of cyclophosphamide together with process of neuroplasty of peripheral nervous system could lead to a protection against neuronal loss.
Resumo:
A very appropriate method for antigenotoxicity evaluation of antioxidants is the comet assay, since this analytical method detects initial DNA lesions that are still subject to repair; in other words, lesions that are very associated to damages resulting from the generation and subsequent action of reactive species. However, a solid evaluation should be developed in order to avoid inexact interpretations. In our study, besides the association of curcumin with cisplatin, curcumin and cisplatin agents were also tested separately. Classical genotoxic compounds, when tested by the comet assay, present an increase in the nucleoid tail; however, the cisplatin treatment has resulted in a decrease of DNA migration. This was an expected effect, as the cross-links between cisplatin and DNA decrease the DNA electrophoretic mobility. A similar effect was observed with the curcumin treatment, which decreased the nucleoid tail. Such effect was not expected and reinforced the necessity of including in the study, separate treatment groups with potentially antigenotoxic substances. The comet assay results have been analyzed using specific software for image analysis, as well as the classical visual analysis, and we have observed that the effect of decrease in DNA electrophoretic mobility was more easily observed when the data were analyzed by the software.
Resumo:
Recent studies revealed that vasopressinergic neurons have a high content of cys-leukotriene C(4) (LTC(4)) synthase, a critical enzyme in cys-leukotriene synthesis that may play a role in regulating vasopressin secretion. This study investigates the role of this enzyme in arginine vasopressin (AVP) release during experimentally induced sepsis. Male Wistar rats received an i.c.v. injection of 3-[1-(p-chlorobenzyl)-5-(isopropyl)-3-tert-butylthioindol-2-yl]-2, 2-dimethylpropanoic acid (MK-886) (1.0 mu g/kg), a leukotrienes (LTs) synthesis inhibitor, or vehicle, 1 h before cecal ligation and puncture (CLP) or sham operation. In one group of animals the survival rate was monitored for 3 days. In another group, the animals were decapitated at 0, 4, 6, 18 and 24 h after CLP or sham operation, and blood was collected for hematocrit, serum sodium and nitrate, plasma osmolality, protein and AVP determination. A third group was used for blood pressure measurements. The neurohypophysis was removed for quantification of AVP content, and the hypothalamus was dissected for LTC4 synthase analysis by Western blot. Mortality after CLP was reduced by the central administration of MK-886. The increase in plasma AVP levels and hypothalamus LTC4 synthase content in the initial phase of sepsis was blocked, whereas the decrease in neurohypophyseal AVP content was partially reversed. Also the blood pressure drop was abolished in this phase. The increase of serum nitric oxide and hematocrit was reduced, and the decrease in plasma protein and osmolality was not affected by the LTs blocker. In the final phase of sepsis, the plasma AVID level and the hypothalamic LTC4 synthase content were at basal levels. The central administration of MK-886 increased the hypothalamic LTC4 synthase content but did not alter the plasma and neurohypophysis AVID levels observed, or the blood pressure during this phase. These results suggest that the central LTs are involved in the vasopressin release observed during sepsis. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Cell damage and spatial localization deficits are often reported as long-term consequences of pilocarpine-induced status epilepticus. In this study, we investigated the neuroprotective effects of repeated drug administration after long-lasting status epilepticus. Groups of six to eight Wistar rats received microinjections of pilocarpine (2.4 mg/mu l, 1 mu l) in the right dorsal hippocampus to induce a status epilepticus, which was attenuated by thiopental injection (35 mg/kg, i.p.) 3 hrs after onset. Treatments consisted of i.p. administration of diazepam, ketamine, carbamazepine, or phenytoin at 4, 28, 52, and 76 hr after the onset of status epilepticus. Two days after the treatments, rats were tested in the Morris water maze and 1 week after the cognitive tests, their brains were submitted to histology to perform haematoxylin and eosin staining and glial fibrillary acidic protein (GFAP) immunofluorescence detection. Post-status epilepticus rats exhibited extensive gliosis and cell loss in the hippocampal CA1, CA3 (70% cell loss for both areas) and dentate gyrus (60%). Administration of all drugs reduced cell loss in the hippocampus, with best effects observed in brains slices of diazepam-treated animals, which showed less than 30% of loss in the three areas and decreased GFAP immunolabelling. Treatments improved spatial navigation during training trials and probe trial, with exception of ketamine. Interestingly, in the probe trial, only diazepam-treated animals showed preference for the goal quadrant. Our data point to significant neuroprotective effects of repeated administration of diazepam against status epilepticus-induced cell damage and cognitive disturbances.
Resumo:
Motor impairments of Parkinson`s disease (PD) appear only after the loss of more than 70% of the DAergic neurons of the substantia nigra pars compacta (SNc). An earlier phase of this disease can be modeled in rats that received a unilateral infusion of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) into the SNc. Though these animals do not present gross motor impairments, they rotate towards the lesioned side when challenged with DAergic drugs, like amphetamine and apomorphine. The present study aimed to test whether these effects occur because the drugs disrupt compensatory mechanisms that keep extracellular levels of dopamine in the striatum (DA(E)) unchanged. This hypothesis was tested by an in vivo microdialysis study in awake rats with two probes implanted in the right and left striatum. Undrugged rats did not present turning behaviour and their basal DA(E) did not differ between the lesioned and sham-lesioned sides. However, after apomorphine treatment, DA(E) decreased in both sides, but to a larger extent in the lesioned side at the time the animals started ipsiversive turning behaviour. After amphetamine challenge, DA(E) increased in both sides, becoming significantly higher in the non-lesioned side at the time the animals started ipsiversive turning behaviour. These results are in agreement with the hypothesis that absence of gross motor impairments in this rat model of early phase PD depends on maintenance of extracellular DA by mechanisms that may be disrupted by events demanding its alteration to higher or lower levels. (C) 2010 Elsevier B.V. All rights reserved.
Effect of estradiol benzoate microinjection into the median raphe nucleus on contextual conditioning
Resumo:
Estrogen deficiency has been associated with stress, anxiety and depression. Estrogen receptors have been identified in the median raphe nucleus (MRN). This structure is the main source of serotonergic projections to the hippocampus, a forebrain area implicated in the regulation of defensive responses and in the resistance to chronic stress. There is reported evidence indicating that estrogen modulates 5-HT(1A) receptor function. In the MRN, somatodendritic 5-HT(1A) receptors control the activity of serotonergic neurones by negative feedback. The present study has evaluated the effect of intra-MRN injection of estradiol benzoate (EB, 600 or 1200 ng/0.2 mu l) on the performance of ovariectormized rats submitted to contextual conditioning. Additionally, the same treatment was given after intra-MRN injection of Way 100635 (100 ng/0.2 mu l). a 5-HT(1A) receptor antagonist. Both doses of EB decreased freezing and increased rearing, indicating an anxiolytic effect. Pretreatment with Way 100635 antagonized the anxiolytic effect of estradiol. On the basis of these results, it may be suggested that estrogens modulate anxiety by acting on 5-HT(1A) receptors localized in the MRN. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The involvement of dopamine (DA) mechanisms in the nucleus accumbens (NAC) in fear conditioning has been proposed by many studies that have challenged the view that the NAC is solely involved in the modulation of appetitive processes. However, the role of the core and shell subregions of the NAC in aversive conditioning remains unclear. The present study examined DA release in these NAC subregions using microdialysis during the expression of fear memory. Guide cannulae were implanted in rats in the NAC core and shell. Five days later, the animals received 10 footshocks (0.6 mA, 1 s duration) in a distinctive cage A (same context). On the next day, dialysis probes were inserted through the guide cannulae into the NAC core and shell subregions, and the animals were behaviorally tested for fear behavior either in the same context (cage A) or in a novel context (cage B). Dialysates were collected every 5 min for 90 min and analyzed by high-performance liquid chromatography. The rats exhibited a significant fear response in cage A but not in cage B. Moreover, increased DA levels in both NAC subregions were observed 5-25 min after the beginning of the test when the animals were tested in the same context compared with accumbal DA levels from rats tested in the different context. These findings Suggest that DA mechanisms in both the NAC core and shell may play an important role in the expression of contextual fear memory. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The amygdala, the dorsal periaqueductal gray (dPAG), and the media] hypothalamus have long been recognized to be a neural system responsible for the generation and elaboration of unconditioned fear in the brain. It is also well known that this neural substrate is under a tonic inhibitory control exerted by GABA mechanisms. However, whereas there is a growing body of evidence to suggest that the amygdala and dPAG are also able to integrate conditioned fear, it is still unclear, however, how the distinct hypothalamic nuclei participate in fear conditioning. In this work we aimed to examine the extent to which the gabaergic mechanisms of this brain region are involved in conditioned fear using the fear-potentiated startle (FPS). Muscimol, a GABA-A receptor agonist, and semicarbazide, an inhibitor of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD), were used as an enhancer and inhibitor of the GABA mechanisms, respectively. Muscimol and semicarbazide were injected into the anterior hypothalamus (AHN). the dorsomedial part of the ventromedial nucleus (VMHDM), the dorsomedial (DMH) or the dorsal premammillary (PMD) nuclei of male Wistar rats before test sessions of the fear conditioning paradigm. The injections into the DMH and PMD did not produce any significant effects on FPS. On the other hand, muscimol injections into the AHN and VMHDM caused significant reduction in FPS. These results indicate that injections of muscimol and semicarbazide into the DMH and PMD fail to change the FPS, whereas the enhancement of the GABA transmission in the AHN and VMHDM produces a reduction of the conditioned fear responses. On the other hand, the inhibition of this transmission led to an increase of this conditioned response in the AHN. Thus, whereas DMH and PMD are known to be part of the caudal-most region of the medial hypothalamic defensive system, which integrates unconditioned fear, systems mediating conditioned fear select the AHN and VMHDM nuclei that belong to the rostral-most portion of the hypothalamic defense area. Thus, distinct subsets of neurons in the hypothalamus could mediate different aspects of the defensive responses. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Excitation of the mesocorticolimbic pathway, originating from dopaminergic neurons in the ventral tegmental area (VTA), may be important for the development of exaggerated fear responding. Among the forebrain regions innervated by this pathway, the amygdala is an essential component of the neural circuitry of conditioned fear. The functional role of the dopaminergic pathway connecting the VIA to the basolateral amygdala (BLA) in fear and anxiety has received little attention. In vivo microdialysis was performed to measure dopamine levels in the BLA of Wistar rats that received the dopamine D(2) agonist quinpirole (1 mu g/0.2 mu l) into the VTA and were subjected to a fear conditioning test using a light as the conditioned stimulus (CS). The effects of intra-BLA injections of the D(1) antagonist SCH 23390 (1 and 2 mu g/0.2 mu l) and D(2) antagonist sulpiride (1 and 2 mu g/0.2 mu l) on fear-potentiated startle (FPS) to a light-CS were also assessed. Locomotor performance was evaluated by use of open-field and rotarod tests. Freezing and increased dopamine levels in the BLA in response to the CS were both inhibited by intra-VTA quinpirole. Whereas intra-BLA SCH 23390 did not affect FPS, intra-BLA sulpiride (2 mu g) inhibited FPS. Sulpiride`s ability to decrease FPS cannot be attributed to nonspecific effects because this drug did not affect motor performance. These findings indicate that the dopamine D(2) receptor pathway connecting the ventral tegmental area and the basolateral amygdala modulates fear and anxiety and may be a novel pharmacological target for the treatment of anxiety. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Rats with a bilateral neonatal ventral hippocampus lesion (NVHL) are used as models of neurobiological aspects of schizophrenia. In view of their decreased number of GABAergic interneurons, we hypothesized that they would show increased reactivity to acoustic stimuli. We systematically characterized the acoustic reactivity of NVHL rats and sham operated controls. They were behaviourally observed during a loud white noise. A first cohort of 7 months` old rats was studied. Then the observations were reproduced in a second cohort of the same age after characterizing the reactivity of the same rats to dopaminergic drugs. A third cohort of rats was studied at 2, 3, 4, 5 and 6 months. In subsets of lesioned and control rats, inferior colliculus auditory evoked potentials were recorded. A significant proportion of rats (50-62%) showed aberrant audiogenic responses with explosive wild running resembling the initial phase of audiogenic seizures. This was not correlated with their well-known enhanced reactivity to dopaminergic drugs. The proportion of rats showing this strong reaction increased with rats` age. After the cessation of the noise, NVHL rats showed a long freezing period that did neither depend on the size of the lesion nor on the rats` age. The initial negative deflection of the auditory evoked potential was enhanced in the inferior colliculus of only NVHL rats that displayed wild running. Complementary anatomical investigations using X-ray scans in the living animal, and alizarin red staining of brain slices, revealed a thin layer of calcium deposit close to the medial geniculate nuclei in post-NVHL rats, raising the possibility that this may contribute to the hyper-reactivity to sounds seen in these animals. The findings of this study provide complementary information with potential relevance for the hyper-reactivity noted in patients with schizophrenia, and therefore a tool to investigate the underlying biology of this endophenotype. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Independent studies have shown that the median raphe nucleus (MRN) and dorsal hippocampus (DH) are involved in the expression of contextual conditioned fear (CFC). However, studies that examine the integrated involvement of serotonergic mechanisms of the MRN-DH are lacking. To address this issue, a CFC paradigm was used to test whether the serotonergic projections from the MRN to DH can influence CFC. Serotoninergic drugs were infused either into the MRN or DH prior to testing sessions in which freezing and startle responses were measured in the same context where 6 h previously rats received footshocks. A reduction of serotonin (5-HT) transmission in the MRN by local infusions of the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) decreased freezing in response to the context but did not reduce fear-potentiated startle. This pattern of results is consistent with the hypothesis that MRN serotonergic mechanisms selectively modulate the freezing response to the aversive context. As for the DH, a decrease in postsynaptic 5-HT receptor activity at projection areas has been proposed to be the main consequence of 5-HT(1A) receptor activation in the MIRN. Intra-DH injections of 8-OH-DPAT inhibited both the freezing and fear-potentiated startle response to the context. To reconcile these findings, an inhibitory mechanism may exist between the incoming 5-HT pathway from the MRN to DH and the neurons of the DH output to other structures. The DH-amygdala or medial prefrontal cortex projections could well be this output circuit modulating the expression of CFC as revealed by measurements of Fos immunoreactivity in these areas. (C) 2009 Elsevier B.V. All rights reserved.